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Symmetries:

• A symmetry of a triangle is a transformation taking vertices to

vertices and preserving lengths.

• In general a symmetry is a transformation preserving the

appropriate structures (for example distances).



'

&

$

%

Symmetries:

• A symmetry of a triangle is a transformation taking vertices to

vertices and preserving lengths.

• In general a symmetry is a transformation preserving the

appropriate structures (for example distances).



'

&

$

%

Symmetries:

• A symmetry of a triangle is a transformation taking vertices to

vertices and preserving lengths.

• In general a symmetry is a transformation preserving the

appropriate structures (for example distances).



'

&

$

%

• We shall consider periodic transformations T , i.e., with T k the

identity for some k (called the order of T ).

• Transformations S and T are said to to be equivalent if they

are equal after a change of co-ordinates. Equivalent

transformations have the same order k.

• More generally, we say the groups 〈S〉 and 〈T 〉 are equivalent if

the sets {S, S2, . . . Sk} and {T, T 2, . . . T k} are equal after a

change of co-ordinates. For example, if S is the rotation of the

plane by π/3 and T is the rotation by 2π/3, 〈S〉 and 〈T 〉 are

equivalent.

• We shall consider smooth T (not necessarily preserving

distances). We allow smooth changes of co-ordinates.
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Symmetries of spheres

• We shall consider smooth periodic transformations of an

n-sphere Sn, which is the set of unit vectors in Rn+1.

• For n = 1 and n = 2, every smooth symmetry is equivalent to a

rotation or a reflection.

• In dimensions 5 and above, this is false. But symmetries of Sn

up to equivalence are classified.

• In dimension 3, if T fixes some point x then T is equivalent to

a rotation or reflection.

• We shall consider the case when n = 3 and T has no fixed

points.
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The Poincaré-Hopf theorem:

• Water flowing smoothly on a sphere must be stationary at

some point.

• This is not so for water flowing on a torus - the surface of a

doughnut.
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What is topology?

• Formally, the Poincaré-Hopf theorem implies that any smooth

vector field on a sphere is zero somewhere.

• This is a theorem in topology because it does not depend on

the sphere being round - it is also true for the surface of an egg.

• Topological properties are those that are preserved by any

smooth transformation (or any continuous transformation).

• Locally a sphere and a torus are the same. Topological

properties are the global properties.
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Framings

• On the torus, we can find two tangent vector fields of unit

length that are perpendicular everywhere.

• A framing of a k-dimensional space M is a collection of k

smooth unit vector fields tangent to M that are mutually

perpendicular.

• Two framings are equivalent if we can continuously deform one

to the other.
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Unit vector fields on S1

• Consider a unit vector field on S1 (not necessarily tangent to

S1). This gives a function f : S1 → S1 (as a unit vector is a

point on the circle S1).

• We can associate to a function f : S1 → S1 its degree, with the

the map z 7→ zk, (z ∈ C, |z| = 1) having degree k.

• Two unit vector fields on S1 are equivalent if and only if the

degrees of the corresponding maps are equal.



'

&

$

%

Unit vector fields on S1

• Consider a unit vector field on S1 (not necessarily tangent to

S1). This gives a function f : S1 → S1 (as a unit vector is a

point on the circle S1).

• We can associate to a function f : S1 → S1 its degree, with the

the map z 7→ zk, (z ∈ C, |z| = 1) having degree k.

• Two unit vector fields on S1 are equivalent if and only if the

degrees of the corresponding maps are equal.



'

&

$

%

Unit vector fields on S1

• Consider a unit vector field on S1 (not necessarily tangent to

S1). This gives a function f : S1 → S1 (as a unit vector is a

point on the circle S1).

• We can associate to a function f : S1 → S1 its degree, with the

the map z 7→ zk, (z ∈ C, |z| = 1) having degree k.

• Two unit vector fields on S1 are equivalent if and only if the

degrees of the corresponding maps are equal.



'

&

$

%

Quaternions

• The complex numbers can be viewed as expressions z = a+ bi,

a and b real numbers, with the multiplication rule i2 = −1.

• Similarly quaternions are expressions z = a+ bi + cj + dk with

the multiplication rules:

i2 = j2 = k2 = −1; ij = k, jk = i,ki = j

ji = −k,kj = −i, ik = −j

• For z = a+ bi + cj + dk,

– z̄ = a− bi− cj − dk
– |z|2 = zz̄ = a2 + b2 + c2 + d2

– z is a unit quaternion if |z| = 1

– z is purely imaginary if a = 0.
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Quaternions and rotations:

• The purely imaginary quaternions can be identified with R3

and the unit quaternions with S3.

• For a unit quaternion z, the transformation rz : w 7→ z̄wz gives

a rotation of the purely imaginary quaternions.

• The transformations rz give all rotations.

• Thus, we can essentially identify rotations in dimension 3 with

the unit quaternions S3 (more precisely with S3/±1).

• Similarly, using Rzz′ : w → zwz′, we get an identification of

rigid body motions of R4 with (S3 × S3)/±(1, 1).
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Framings of S3

• A framing of S1 ⊂ C is given by the vector field V (z) = iz

• Similarly, quaternions give two framings of S3, namely

(zi, zj, zk) and (iz, jz,kz). We call these the left invariant and

right invariant framings.

• We have a similar framing for S7. These are the only spheres

with framings (Milnor-Bott, Kervaire, J.F.Adams).

• Consequently, the only dimensions in which we have a bilinear

product Rk × Rk → Rk with u, v 6= 0 =⇒ uv 6= 0 are 1, 2, 4

and 8.
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Framings of S3

• Given two positive framings ξ and ζ of S3 and a point p ∈ S3,

we get two orthonormal bases ξ(p) and ζ(p) of the tangent

space of S3 at p. These differ by a rotation, hence an element

of S3.

• Thus we get a function f : S3 → S3. Its degree (an integer) is

called the difference between the two framings.

• We regard 0 as corresponding to the left invariant framing.

Then framings of S3 correspond to the integers Z and the right

invariant framing corresponds to 1.
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Symmetries of S3

• Suppose now that T is a smooth transformation of S3 of prime

order p (i.e., T p is the identity).

• Question 1: Given another such transformation S (of the

same order), are the groups 〈S〉 and 〈T 〉 equivalent?

• To answer this, we construct invariants of 〈T 〉, i.e. a quantity

ϕ(T ) associated to T such that if 〈S〉 and 〈T 〉 are equivalent

then ϕ(S) = ϕ(T ).

• This is related to the other fundamental question regarding

symmetries of S3:

• Question 2: Is T equivalent to a rigid body motion?
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Equivariant framings

• A framing ξ is said to be equivariant with respect to 〈T 〉 if the

transformation T takes ξ to itself. Such framings exist by a

theorem of Stiefel.

• The difference between two equivariant framings is a multiple

of p. Hence the remainder when the integer corresponding to

an equivariant framing is divided by p depends only on T .

• We say integers a and b are congruent modulo p (denoted

a ≡ b(mod p)) if b− a is divisible by p. This is an equivalence

relation and the equivalence classes are called congruence

classes.

• Thus, the congruence class F(T ) of an equivariant framing is

an invariant of the group 〈T 〉.
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Lens spaces

• Let Lp,q : (z1, z2)→ (ζz1, ζ
qz2) where ζ = e2πi/p.

• By using the invariant F(), we can show:

Theorem. 〈Lp,q〉 is equivalent to 〈Lp,q′〉 if and only if

q′ ≡ ±q(mod p) or qq′ ≡ 1(mod p).

• Our proof has the advantage of being naturally related to the

exceptional isomorphisms (relating rotations in dimensions 3

and 4 to S3) which play a central role in Topology and Gauge

theory in dimensions 3 and 4.
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q′ ≡ ±q(mod p) or qq′ ≡ 1(mod p).

• Our proof has the advantage of being naturally related to the

exceptional isomorphisms (relating rotations in dimensions 3

and 4 to S3) which play a central role in Topology and Gauge

theory in dimensions 3 and 4.
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“Most people, even some scientists, think that mathematics applies

because you learn Theorem Three and Theorem Three somehow

explains the laws of nature. This does not happen even in science

fiction novels, it is pure fantasy. The results of mathematics are

seldom directly applied; it is the definitions that are really useful.

Once you see the definition of a differential equation, you see

differential equations all over... If you want to apply mathematics,

you have to live the life of differential equations. When you live

this life, you can then go back to molecular biology with a new set

of eyes that will see things that you could not otherwise see.”

- Gian Carlo Rota
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“The facts of mathematics are verified and presented by the

axiomatic method. One must guard, however, against confusing the

presentation of mathematics with the content of mathematics. An

axiomatic presentation of a mathematical fact differs from the fact

that is being presented as medicine differs from food... Confusing

mathematics with the axiomatic method for presentation is as

preposterous as confusing the music of Johann Sebastian Bach with

the techniques for counterpoint in the Baroque age.”

- Gian Carlo Rota


