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Goal

I To equip computers with the ability to perform all

major tasks involved in the discovery and proof of

mathematical results and concepts by mathematicians

and the mathematics community, at a level at least

comparable to humans.

I We must have, if necessary invent, objective measures

to see whether, and how well the tasks are performed.

I It may be useful to invent tasks as exercises.
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Computer Assisted Mathematics
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What computers can do

I Numerical computation.

I Enumeration.

I Symbolic algebra; computational algebra.

I Exact real number arithmetic.

I Linear programming.

I SAT solvers.

I Compact Enumeration.
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Some computer-assisted proofs

I Four colour theorem.

I Kepler conjecture.

I Boolean Pythagorean triples problem.

I Existence of Lorenz attractor.

I The 290 Theorem for integral quadratic forms.
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Robbins Conjecture: Deductive proofs

I Robbins conjecture was a conjectural characterization

of Boolean algebras in terms of associativity and

commutativity of ∨ and the Robbins equation

¬(¬(a ∨ b) ∨ ¬(a ∨ ¬b)) = a.

I This was conjectured in the 1930s.
I It was finally proved in 1996 using the automated

theorem prover EQP.
I This is a Resolution Theorem Prover with

Paramodulation.
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Interactive Theorem Proving

I Interactive theorem provers such as Coq, Isabelle and

Lean fill in details of and verify results.

I In practice these have been used (so far) in

formalizing proofs, not discovery.

I The greatest success so far has been the formal proof

of the Feit-Thompson theorem by Georges Gonthier.
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Homogeneous length functions on groups

Question (Apoorva Khare via Terence Tao)

Is there a function l : 〈α, β〉 → [0,∞) on the free group

on two generators such that

I l(g) = 0 if and only if g = e (positivity).

I l(g−1) = l(g) for all g ∈ 〈α, β〉.
I l(gh) ≤ l(g) + l(h) for all g , h ∈ 〈α, β〉.
I l(ghg−1) = l(h) for all g , h ∈ 〈α, β〉.
I l(gn) = nl(g) for all g ∈ 〈α, β〉, n ∈ Z.
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The Quest

I On Saturday, December 16, 2017, Terence Tao

posted this question on his blog for crowdsourcing.

I Over the next 4-5 days, by work of many people,

I there were many (failed, but instructive) attempts to
construct such length functions,

I leading to the general feeling that l([α, β]) = 0;
I increasingly sharp bounds and methods of combining

bounds, but no visible path to l([α, β]) = 0.

I On Thursday morning I posted a proof of a

computer-assisted bound.
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Proof which I posted online

Proof of a bound on l([α, β]) for l a homogeneous, conjugacy
invariant length function with l(α), l(β) ≤ 1.

I |ā| ≤ 1.0

I |b̄āb| ≤ 1.0 using |ā| ≤ 1.0

I |b̄| ≤ 1.0

I |ab̄ā| ≤ 1.0 using |b̄| ≤ 1.0

I |āb̄abāb̄| ≤ 2.0 using |āb̄a| ≤ 1.0 and |bāb̄| ≤ 1.0

I ... (119 lines)

I |abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄| ≤
13.859649122807017 using |abā| ≤ 1.0 and
|b̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄| ≤
12.859649122807017

I |abāb̄| ≤ 0.8152734778121775 using
|abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄| ≤
13.859649122807017 by taking 17th power.

i.e., l(α, β) ≤ 0.8152734778121775
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I |ā| ≤ 1.0
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I The computer-generated proof was studied by Pace

Nielsen, who extracted the internal repetition trick.

I This was extended by Pace Nielsen and Tobias Fritz

and generalized by Terence Tao.
I From this Fritz obtained the key lemma:

Lemma
Let f (m, k) = l(xm[x , y ]k). Then

f (m, k) ≤ f (m − 1, k) + f (m + 1, k − 1)

2
.

I A probabilistic argument of Tao showed l([x , y ]) = 0.

Siddhartha Gadgil Automating Mathematics? 12 / 34



I The computer-generated proof was studied by Pace

Nielsen, who extracted the internal repetition trick.
I This was extended by Pace Nielsen and Tobias Fritz

and generalized by Terence Tao.

I From this Fritz obtained the key lemma:

Lemma
Let f (m, k) = l(xm[x , y ]k). Then

f (m, k) ≤ f (m − 1, k) + f (m + 1, k − 1)

2
.

I A probabilistic argument of Tao showed l([x , y ]) = 0.

Siddhartha Gadgil Automating Mathematics? 12 / 34



I The computer-generated proof was studied by Pace

Nielsen, who extracted the internal repetition trick.
I This was extended by Pace Nielsen and Tobias Fritz

and generalized by Terence Tao.
I From this Fritz obtained the key lemma:

Lemma
Let f (m, k) = l(xm[x , y ]k). Then

f (m, k) ≤ f (m − 1, k) + f (m + 1, k − 1)

2
.

I A probabilistic argument of Tao showed l([x , y ]) = 0.

Siddhartha Gadgil Automating Mathematics? 12 / 34



I The computer-generated proof was studied by Pace

Nielsen, who extracted the internal repetition trick.
I This was extended by Pace Nielsen and Tobias Fritz

and generalized by Terence Tao.
I From this Fritz obtained the key lemma:

Lemma
Let f (m, k) = l(xm[x , y ]k). Then

f (m, k) ≤ f (m − 1, k) + f (m + 1, k − 1)

2
.

I A probabilistic argument of Tao showed l([x , y ]) = 0.

Siddhartha Gadgil Automating Mathematics? 12 / 34



I The computer-generated proof was studied by Pace

Nielsen, who extracted the internal repetition trick.
I This was extended by Pace Nielsen and Tobias Fritz

and generalized by Terence Tao.
I From this Fritz obtained the key lemma:

Lemma
Let f (m, k) = l(xm[x , y ]k). Then

f (m, k) ≤ f (m − 1, k) + f (m + 1, k − 1)

2
.

I A probabilistic argument of Tao showed l([x , y ]) = 0.
Siddhartha Gadgil Automating Mathematics? 12 / 34



Mathematical Tasks
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I Introduce/construct (invent, discover):

I Deductions, computations, proofs, solutions, backward
deductions (e.g. case splitting), questions, conjectures,
goals, techniques, heuristics.

I By recalling and using existing objects, including by
analogy, generalization, instantiation (specialization).

I Experiment and judge plausibility.

I Evaluate (judge) based on:

I Outcomes – known questions, simple statements with
hard proofs, novelty, depth, applications etc.

I Derived value – expected to be useful for outcomes.

I (Usually) depending on contexts and goals.

Siddhartha Gadgil Automating Mathematics? 14 / 34



I Introduce/construct (invent, discover):
I Deductions, computations, proofs, solutions, backward

deductions (e.g. case splitting), questions, conjectures,
goals, techniques, heuristics.

I By recalling and using existing objects, including by
analogy, generalization, instantiation (specialization).

I Experiment and judge plausibility.

I Evaluate (judge) based on:

I Outcomes – known questions, simple statements with
hard proofs, novelty, depth, applications etc.

I Derived value – expected to be useful for outcomes.

I (Usually) depending on contexts and goals.

Siddhartha Gadgil Automating Mathematics? 14 / 34



I Introduce/construct (invent, discover):
I Deductions, computations, proofs, solutions, backward

deductions (e.g. case splitting), questions, conjectures,
goals, techniques, heuristics.

I By recalling and using existing objects, including by
analogy, generalization, instantiation (specialization).

I Experiment and judge plausibility.

I Evaluate (judge) based on:

I Outcomes – known questions, simple statements with
hard proofs, novelty, depth, applications etc.

I Derived value – expected to be useful for outcomes.

I (Usually) depending on contexts and goals.

Siddhartha Gadgil Automating Mathematics? 14 / 34



I Introduce/construct (invent, discover):
I Deductions, computations, proofs, solutions, backward

deductions (e.g. case splitting), questions, conjectures,
goals, techniques, heuristics.

I By recalling and using existing objects, including by
analogy, generalization, instantiation (specialization).

I Experiment and judge plausibility.

I Evaluate (judge) based on:

I Outcomes – known questions, simple statements with
hard proofs, novelty, depth, applications etc.

I Derived value – expected to be useful for outcomes.

I (Usually) depending on contexts and goals.

Siddhartha Gadgil Automating Mathematics? 14 / 34



I Introduce/construct (invent, discover):
I Deductions, computations, proofs, solutions, backward

deductions (e.g. case splitting), questions, conjectures,
goals, techniques, heuristics.

I By recalling and using existing objects, including by
analogy, generalization, instantiation (specialization).

I Experiment and judge plausibility.

I Evaluate (judge) based on:

I Outcomes – known questions, simple statements with
hard proofs, novelty, depth, applications etc.

I Derived value – expected to be useful for outcomes.

I (Usually) depending on contexts and goals.

Siddhartha Gadgil Automating Mathematics? 14 / 34



I Introduce/construct (invent, discover):
I Deductions, computations, proofs, solutions, backward

deductions (e.g. case splitting), questions, conjectures,
goals, techniques, heuristics.

I By recalling and using existing objects, including by
analogy, generalization, instantiation (specialization).

I Experiment and judge plausibility.

I Evaluate (judge) based on:
I Outcomes – known questions, simple statements with

hard proofs, novelty, depth, applications etc.

I Derived value – expected to be useful for outcomes.

I (Usually) depending on contexts and goals.

Siddhartha Gadgil Automating Mathematics? 14 / 34



I Introduce/construct (invent, discover):
I Deductions, computations, proofs, solutions, backward

deductions (e.g. case splitting), questions, conjectures,
goals, techniques, heuristics.

I By recalling and using existing objects, including by
analogy, generalization, instantiation (specialization).

I Experiment and judge plausibility.

I Evaluate (judge) based on:
I Outcomes – known questions, simple statements with

hard proofs, novelty, depth, applications etc.
I Derived value – expected to be useful for outcomes.

I (Usually) depending on contexts and goals.

Siddhartha Gadgil Automating Mathematics? 14 / 34



I Introduce/construct (invent, discover):
I Deductions, computations, proofs, solutions, backward

deductions (e.g. case splitting), questions, conjectures,
goals, techniques, heuristics.

I By recalling and using existing objects, including by
analogy, generalization, instantiation (specialization).

I Experiment and judge plausibility.

I Evaluate (judge) based on:
I Outcomes – known questions, simple statements with

hard proofs, novelty, depth, applications etc.
I Derived value – expected to be useful for outcomes.

I (Usually) depending on contexts and goals.

Siddhartha Gadgil Automating Mathematics? 14 / 34



I Digest/Refine: both newly discovered mathematics

and known mathematics.

I Develop strategies for proving/solving: intermediate

goals, allocate resources.

I Keep improving.

I Read and digest the literature (some of which is

formalized).

I Handle mathematics in the large.

I Find good and useful proofs, in particular proofs from

which we can learn.
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Artificial Inteligence elsewhere
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Chess and friends

I Playing Chess, etc can be based on

I Evaluation of a fixed players position (say White).
I Policy: which sequences of moves to consider.

I We evaluate the state at the end of sequences of

moves we consider.

I Using this, we recursively decide the best moves

based on alternately maximizing and minimizing.

Siddhartha Gadgil Automating Mathematics? 17 / 34



Chess and friends

I Playing Chess, etc can be based on
I Evaluation of a fixed players position (say White).

I Policy: which sequences of moves to consider.

I We evaluate the state at the end of sequences of

moves we consider.

I Using this, we recursively decide the best moves

based on alternately maximizing and minimizing.

Siddhartha Gadgil Automating Mathematics? 17 / 34



Chess and friends

I Playing Chess, etc can be based on
I Evaluation of a fixed players position (say White).
I Policy: which sequences of moves to consider.

I We evaluate the state at the end of sequences of

moves we consider.

I Using this, we recursively decide the best moves

based on alternately maximizing and minimizing.

Siddhartha Gadgil Automating Mathematics? 17 / 34



Chess and friends

I Playing Chess, etc can be based on
I Evaluation of a fixed players position (say White).
I Policy: which sequences of moves to consider.

I We evaluate the state at the end of sequences of

moves we consider.

I Using this, we recursively decide the best moves

based on alternately maximizing and minimizing.

Siddhartha Gadgil Automating Mathematics? 17 / 34



Chess and friends

I Playing Chess, etc can be based on
I Evaluation of a fixed players position (say White).
I Policy: which sequences of moves to consider.

I We evaluate the state at the end of sequences of

moves we consider.

I Using this, we recursively decide the best moves

based on alternately maximizing and minimizing.

Siddhartha Gadgil Automating Mathematics? 17 / 34



Programming a Computer for Playing Chess

I Shannon distinguished two kinds of strategies –

type A where all moves are considered up to a fixed

depth and type B where a refined policy is used.

I Various heuristics, such as quiescence search and

α− β pruning are used to refine type A engines.

I Openings and end-games are instead based on

databases.

I Deep blue (which defeated Kasparov in 1997) and

other top chess engines are such systems.
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Limitations of Chess Engines

I The policy is very weak, considering almost all moves

or only a few.

I Evaluation is also sub-human, especially when it

comes to complex positional values.

I Chess engines also do not think strategically, i.e.,

having sub-goals and allocating resources.

I In a different domain, these weaknesses may matter

much more than in Chess.
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The Game of Go

I In the chinese game of Go,

I the number of possible moves is much larger.
I It is very difficult to have a good evaluation function.

I The Go champion AlphaGo is not an Expert system,

but is based instead on Machine Learning.

March 2016 vs Lee Sedol

May 2017 vs Ke Jie
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Neural Networks

I A feedforward neural network is a class of functions

f : Rn → Rm determined by finitely many real

parameters.

I Functions in the class are given by compositions of so

called layers, which are functions of a specific form.

I Each layer is typically the composition of a linear

transformation with a sigmoid, e.g., S(x) = ex

ex+1.

I We can optimize functions within this class using a

gradient flow layer-by-layer.
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AlphaGo

I The policy and value functions of AlphaGo are deep

neural networks that were trained.

I The policy network was trained by learning to predict

the next move from games of expert players.

I The value network was trained by AlphaGo playing

against versions of itself.

I AlphaGo considered fewer sequences of moves than

Deep Blue.

I AlphaGo came up with unexpected moves.
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Word2Vec : Representation learning

I Rather than just treating words as equal or unequal,

we associate vectors to them to capture semantics.

I To do this, we set up the task of predicting the 4

immediate neighbours of a word.
I We optimize solutions that are compositions of

I embeddings of words in Rn (representations).
I functions on Rn.

I The vectors capture analogy relations:

king −man + woman ≈ queen.
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AlphaGo Zero

I In October 2017, Google DeepMind (the makers of

AlphaGo), introduced AlphaGo Zero, a Go playing

program much stronger than AlphaGo.

I This learnt purely by self-play with zero data.

I The policy and value networks used a common

representation of the Go board.

I In December 2017, this was generalized to AlphaZero,

which defeated a top Chess program.

I AlphaZero played a bold positional game.
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Zero Shot translation

I Instead of training a separate translator between every

pair of languages, Google switched to a common

network with input labelled by language.

I This could translate between pairs of languages with

no training for that pair.

I The system has an internal representation which

seems to be based on meanings of sentences.
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Generative Adversarial Networks

I These consist of a pair of networks, contesting with

each other in a zero-sum game framework.

I One network generates candidates (generative) and

the other evaluates them (discriminative).

I The generative network’s training objective is to

increase the error rate of the discriminative network

I For example the discriminative network tries to

distinguish between real images and synthetic ones

generated by the generative network.
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Generative Query Network

I In a simulated 3D environment with random light

sources, observed 2D images from a few positions.

I Had to show the image from a new position.

I The GQN model composed of two parts: a

representation network and a generation network.

I The representation network captures important

elements, such as object positions, colours and the

room layout, in a concise distributed representation.

I The representations showed compositional behaviour.
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What Artificial Inteligence can do

I Generate solutions that we can see are good.

I Judge value based on future likely outcomes.

I Show originality.

I Learn things for which we depend on tacit knowledge:

“we know more than we can say.”

I Work with limited and/or unstructured data.

I Organize observations naturally and efficiently.
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Mathematical Tasks revisited
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Learning to do Mathematics

I We must learn

I Mathematics, i.e., a body of knowledge.
I How to prove theorems etc using this knowledge.
I How to assimilate results to extend our knowledge.

I The body of knowledge should be

I Efficient at proving theorems (relative entropy).
I Parsimonious (entropy).
I Structured (foundations, representation learning).

I HoTT foundations gives reasonable policies, values.

I More structure than Chess, more depth than Go.

Siddhartha Gadgil Automating Mathematics? 30 / 34



Learning to do Mathematics

I We must learn
I Mathematics, i.e., a body of knowledge.

I How to prove theorems etc using this knowledge.
I How to assimilate results to extend our knowledge.

I The body of knowledge should be

I Efficient at proving theorems (relative entropy).
I Parsimonious (entropy).
I Structured (foundations, representation learning).

I HoTT foundations gives reasonable policies, values.

I More structure than Chess, more depth than Go.

Siddhartha Gadgil Automating Mathematics? 30 / 34



Learning to do Mathematics

I We must learn
I Mathematics, i.e., a body of knowledge.
I How to prove theorems etc using this knowledge.

I How to assimilate results to extend our knowledge.

I The body of knowledge should be

I Efficient at proving theorems (relative entropy).
I Parsimonious (entropy).
I Structured (foundations, representation learning).

I HoTT foundations gives reasonable policies, values.

I More structure than Chess, more depth than Go.

Siddhartha Gadgil Automating Mathematics? 30 / 34



Learning to do Mathematics

I We must learn
I Mathematics, i.e., a body of knowledge.
I How to prove theorems etc using this knowledge.
I How to assimilate results to extend our knowledge.

I The body of knowledge should be

I Efficient at proving theorems (relative entropy).
I Parsimonious (entropy).
I Structured (foundations, representation learning).

I HoTT foundations gives reasonable policies, values.

I More structure than Chess, more depth than Go.

Siddhartha Gadgil Automating Mathematics? 30 / 34



Learning to do Mathematics

I We must learn
I Mathematics, i.e., a body of knowledge.
I How to prove theorems etc using this knowledge.
I How to assimilate results to extend our knowledge.

I The body of knowledge should be

I Efficient at proving theorems (relative entropy).
I Parsimonious (entropy).
I Structured (foundations, representation learning).

I HoTT foundations gives reasonable policies, values.

I More structure than Chess, more depth than Go.

Siddhartha Gadgil Automating Mathematics? 30 / 34



Learning to do Mathematics

I We must learn
I Mathematics, i.e., a body of knowledge.
I How to prove theorems etc using this knowledge.
I How to assimilate results to extend our knowledge.

I The body of knowledge should be
I Efficient at proving theorems (relative entropy).

I Parsimonious (entropy).
I Structured (foundations, representation learning).

I HoTT foundations gives reasonable policies, values.

I More structure than Chess, more depth than Go.

Siddhartha Gadgil Automating Mathematics? 30 / 34



Learning to do Mathematics

I We must learn
I Mathematics, i.e., a body of knowledge.
I How to prove theorems etc using this knowledge.
I How to assimilate results to extend our knowledge.

I The body of knowledge should be
I Efficient at proving theorems (relative entropy).
I Parsimonious (entropy).

I Structured (foundations, representation learning).

I HoTT foundations gives reasonable policies, values.

I More structure than Chess, more depth than Go.

Siddhartha Gadgil Automating Mathematics? 30 / 34



Learning to do Mathematics

I We must learn
I Mathematics, i.e., a body of knowledge.
I How to prove theorems etc using this knowledge.
I How to assimilate results to extend our knowledge.

I The body of knowledge should be
I Efficient at proving theorems (relative entropy).
I Parsimonious (entropy).
I Structured (foundations, representation learning).

I HoTT foundations gives reasonable policies, values.

I More structure than Chess, more depth than Go.

Siddhartha Gadgil Automating Mathematics? 30 / 34



Learning to do Mathematics

I We must learn
I Mathematics, i.e., a body of knowledge.
I How to prove theorems etc using this knowledge.
I How to assimilate results to extend our knowledge.

I The body of knowledge should be
I Efficient at proving theorems (relative entropy).
I Parsimonious (entropy).
I Structured (foundations, representation learning).

I HoTT foundations gives reasonable policies, values.

I More structure than Chess, more depth than Go.

Siddhartha Gadgil Automating Mathematics? 30 / 34



Learning to do Mathematics

I We must learn
I Mathematics, i.e., a body of knowledge.
I How to prove theorems etc using this knowledge.
I How to assimilate results to extend our knowledge.

I The body of knowledge should be
I Efficient at proving theorems (relative entropy).
I Parsimonious (entropy).
I Structured (foundations, representation learning).

I HoTT foundations gives reasonable policies, values.

I More structure than Chess, more depth than Go.

Siddhartha Gadgil Automating Mathematics? 30 / 34



Tasks again

I Introduce/construct (invent, discover):

I Deductions, computations, proofs, solutions, backward
deductions (e.g. case splitting), questions, goals,
(i.e.,terms, types), techniques, heuristics.

I Recalling and using existing objects, including by
analogy, generalization, instantiation (specialization).

I Experiment and judge plausibility.
I Evaluate (judge) based on:

I Outcomes – known questions, simple statements with
hard proofs, novelty, depth, applications etc.

I Derived value – expected to be useful for outcomes.

I (Usually) depending on contexts and goals.
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More tasks again

I Digest/Refine: both newly discovered mathematics

and known mathematics (representation learning).

I Develop strategies for proving/solving : intermediate

goals, allocate resources.

I Keep improving.

I Read and digest the literature (use NLP tools).

I Handle mathematics in the large.

I Find good proofs – from which we can learn.
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Conclusions
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I AI systems in other fields have shown superhuman

capabilities in many cognitive tasks.

I For automating mathematics:

I clear approaches and workpoints.
I no evident barriers?

I Partial progress towards the automating mathematics
can lead to

I New uses of computers in discovering mathematics.
I Semantic search in the literature.
I Automatic experimentation, testing, plotting, etc.
I Search for objects with desired properties, combining

various approaches.
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