Lengths on Free groups

Siddhartha Gadgil

Department of Mathematics, Indian Institute of Science.

January 16, 2020

On Saturday, December 16, 2017, Terrence Tao posted on his blog a question, from Apoorva Khare. On Saturday, December 16, 2017, Terrence Tao posted on his blog a question, from Apoorva Khare.
 Question

Is there a homogeneous, (conjugacy invariant) length function on the free group on two generators?

 On Saturday, December 16, 2017, Terrence Tao posted on his blog a question, from Apoorva Khare.
 Question

Is there a homogeneous, (conjugacy invariant) length function on the free group on two generators?

Six days later, this was answered in a collaboration involving several mathematicians (and a computer). On Saturday, December 16, 2017, Terrence Tao posted on his blog a question, from Apoorva Khare.
 Question

Is there a homogeneous, (conjugacy invariant) length function on the free group on two generators?

- Six days later, this was answered in a collaboration involving several mathematicians (and a computer).
- ► This the story of the answer and its discovery.

Tobias Fritz, MPI MIS

- Siddhartha Gadgil, IISc, Bangalore
- ► Apoorva Khare, IISc, Bangalore
- Pace Nielsen, BYU
- Lior Silberman, UBC
- Terence Tao, UCLA

1. The Question

- 1. The Question
- 2. Some lengths

- 1. The Question
- 2. Some lengths
- 3. The Quest

- 1. The Question
- 2. Some lengths
- 3. The Quest
- 4. The Theorem and Proof

- 1. The Question
- 2. Some lengths
- 3. The Quest
- 4. The Theorem and Proof
- 5. Computer Bounds and Proofs

- 1. The Question
- 2. Some lengths
- 3. The Quest
- 4. The Theorem and Proof
- 5. Computer Bounds and Proofs
- 6. Epilogue

The Question

A pseudo-length function on a group G is a function $I: G \to [0, \infty)$ such that

A pseudo-length function on a group G is a function $I: G \to [0, \infty)$ such that

▶ I(e) = 0, where $e \in G$ is the identity,

A pseudo-length function on a group G is a function $I: G \to [0, \infty)$ such that

- ▶ I(e) = 0, where $e \in G$ is the identity,
- ▶ $l(g^{-1}) = l(g)$ for all $g \in G$ (symmetry),

A pseudo-length function on a group G is a function
 I : G → [0, ∞) such that
 I(e) = 0, where e ∈ G is the identity,

- ► $I(g^{-1}) = I(g)$ for all $g \in G$ (symmetry),
- *l*(*gh*) ≤ *l*(*g*) + *l*(*h*) for all *g*, *h* ∈ *G* (the triangle inequality).

- A pseudo-length function on a group G is a function $I: G \to [0, \infty)$ such that
 - ▶ I(e) = 0, where $e \in G$ is the identity,
 - ► $I(g^{-1}) = I(g)$ for all $g \in G$ (symmetry),
 - *l*(*gh*) ≤ *l*(*g*) + *l*(*h*) for all *g*, *h* ∈ *G* (the triangle inequality).
- A pseudo-length function *I* on a group *G* is said to be a length function if *I*(*g*) > 0 for all *g* ∈ *G* \ {*e*}.

- A pseudo-length function on a group G is a function $I: G \to [0, \infty)$ such that
 - ▶ I(e) = 0, where $e \in G$ is the identity,
 - ► $I(g^{-1}) = I(g)$ for all $g \in G$ (symmetry),
 - *l*(*gh*) ≤ *l*(*g*) + *l*(*h*) for all *g*, *h* ∈ *G* (the triangle inequality).
- A pseudo-length function *I* on a group *G* is said to be a length function if *I*(*g*) > 0 for all *g* ∈ *G* \ {*e*}.
 Norms on vector spaces, such as *I*(*x*, *y*) = √*x*² + *y*²

on $\mathbb{R}^2,$ are length functions.

A pseudo-length function *I* on a group *G* is said to be homogeneous if *I*(*gⁿ*) = *nI*(*g*) for all *g* ∈ *G*, *n* ∈ Z.

A pseudo-length function *I* on a group *G* is said to be homogeneous if *I*(*gⁿ*) = *nI*(*g*) for all *g* ∈ *G*, *n* ∈ Z.
 Norms are homogeneous – indeed Apoorva's question was motivated by generalizing stochastic inequalities from Vector spaces with norms.

- A pseudo-length function *I* on a group *G* is said to be homogeneous if *I*(*gⁿ*) = *nI*(*g*) for all *g* ∈ *G*, *n* ∈ Z.
- Norms are homogeneous indeed Apoorva's question was motivated by generalizing stochastic inequalities from Vector spaces with norms.
- A pseudo-length function *I* on a group *G* is said to be conjugacy invariant if *I*(*ghg*⁻¹) = *I*(*h*) for all *g*, *h* ∈ *G*

- A pseudo-length function *I* on a group *G* is said to be homogeneous if *I*(*gⁿ*) = *nI*(*g*) for all *g* ∈ *G*, *n* ∈ Z.
- Norms are homogeneous indeed Apoorva's question was motivated by generalizing stochastic inequalities from Vector spaces with norms.
- A pseudo-length function *I* on a group *G* is said to be conjugacy invariant if *I*(*ghg*⁻¹) = *I*(*h*) for all *g*, *h* ∈ *G*

- A pseudo-length function *I* on a group *G* is said to be homogeneous if *I*(*gⁿ*) = *nI*(*g*) for all *g* ∈ *G*, *n* ∈ Z.
- Norms are homogeneous indeed Apoorva's question was motivated by generalizing stochastic inequalities from Vector spaces with norms.
- A pseudo-length function *I* on a group *G* is said to be conjugacy invariant if *I*(*ghg*⁻¹) = *I*(*h*) for all *g*, *h* ∈ *G* − if *G* is abelian every pseudo-length function is conjugacy-invariant.

▶ Given a length $I : G \to \mathbb{R}$ on a group G, we can define a metric on G by $d(x, y) = I(x^{-1}y)$.

Lengths and Metrics

Given a length *I* : *G* → ℝ on a group *G*, we can define a metric on *G* by *d*(*x*, *y*) = *l*(*x*⁻¹*y*).
This is left-invariant, i.e., *d*(*gx*, *gy*) = *d*(*x*, *y*) for all *g*, *x*, *y* ∈ *G*.

Lengths and Metrics

- ▶ Given a length $I : G \to \mathbb{R}$ on a group G, we can define a metric on G by $d(x, y) = I(x^{-1}y)$.
- ► This is left-invariant, i.e., d(gx, gy) = d(x, y) for all g, x, y ∈ G.
- Conversely any left invariant metric gives a length l(g) := d(e, g), with $d(x, y) = l(x^{-1}y)$.

- Given a length $I : G \to \mathbb{R}$ on a group G, we can define a metric on G by $d(x, y) = I(x^{-1}y)$.
- ► This is left-invariant, i.e., d(gx, gy) = d(x, y) for all g, x, y ∈ G.
- Conversely any left invariant metric gives a length l(g) := d(e, g), with $d(x, y) = l(x^{-1}y)$.
- ► The metric d associated to l is right-invariant, (i.e., d(xg, yg) = d(x, y) for all g, x, y ∈ G) if and only if l is conjugacy invariant.

The Question

$$\blacktriangleright$$
 $l(g) = 0$ if and only if $g = e$ (positivity).

Some lengths

► The word length l_w(g) of an element g ∈ ⟨α, β⟩ is the number of letters in the unique reduced word representing g.

- ► The word length l_w(g) of an element g ∈ ⟨α, β⟩ is the number of letters in the unique reduced word representing g.
- ► The word length is not conjugacy invariant as $I_w(\alpha\beta\alpha^{-1}) = 3 \neq 1 = I(\beta).$

- ► The word length l_w(g) of an element g ∈ ⟨α, β⟩ is the number of letters in the unique reduced word representing g.
- ► The word length is not conjugacy invariant as $I_w(\alpha\beta\alpha^{-1}) = 3 \neq 1 = I(\beta).$
- ► It is also not homogeneous as $I_w((\alpha\beta\alpha^{-1})^2) = I_w(\alpha\beta^2\alpha^{-1}) = 4 \neq 2I_w(\alpha\beta\alpha^{-1}).$

• Consider the abelianization homomorphism $ab: \langle \alpha, \beta \rangle \to \mathbb{Z}^2.$

 Consider the abelianization homomorphism ab : ⟨α, β⟩ → Z².
 The length I_{Z²}(x, y) = |x| + |y| on Z² induces a homogeneous, conjugacy-invariant pseudo-length *l*(g) = I_{Z²}(ab(g)) on ⟨α, β⟩.

- Consider the abelianization homomorphism *ab*: ⟨α, β⟩ → Z².
 The length *I*_{Z²}(*x*, *y*) = |*x*| + |*y*| on Z² induces a homogeneous, conjugacy-invariant pseudo-length *Ī*(*g*) = *I*_{Z²}(*ab*(*g*)) on ⟨α, β⟩.
- However this is not a length as $ab(\alpha\beta\alpha^{-1}\beta^{-1}) = (0,0), \overline{I}(\alpha\beta\alpha^{-1}\beta^{-1}) = 0.$

▶ In general, let φ : $G \to H$ be a homomorphism and $I_H : H \to [0, \infty)$ is a pseudo-length on H.

In general, let φ : G → H be a homomorphism and I_H : H → [0,∞) is a pseudo-length on H.
We get a pseudo-length I_G on G given by

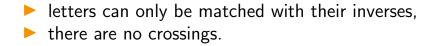
$$I_G(g) = I_H(\varphi(g)).$$

- ▶ In general, let φ : $G \to H$ be a homomorphism and $I_H : H \to [0, \infty)$ is a pseudo-length on H.
- We get a pseudo-length I_G on G given by $I_G(g) = I_H(\varphi(g))$.
- Homogeneity and conjugacy-invariance are inherited by I_G from I_H.

- ▶ In general, let φ : $G \to H$ be a homomorphism and $I_H : H \to [0, \infty)$ is a pseudo-length on H.
- We get a pseudo-length I_G on G given by $I_G(g) = I_H(\varphi(g))$.
- Homogeneity and conjugacy-invariance are inherited by I_G from I_H.
- But I_G satisfies positivity if and only if $I_H|_{\phi(G)}$ satisfies positivity and φ is injective.

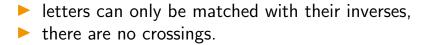
Consider non-crossing matchings for a word in the letters α, β, α⁻¹, and β⁻¹;

 aabābaabāb



Consider non-crossing matchings for a word in the letters α, β, α⁻¹, and β⁻¹;

 aabābaabāb



The energy is the number of unmatched letters.

For a word w in {α, β, α⁻¹, β⁻¹} consider the minimum number of unmatched letters over all non-crossing matchings.

- For a word w in {α, β, α⁻¹, β⁻¹} consider the minimum number of unmatched letters over all non-crossing matchings.
- ▶ **Proposition:** This depends only on the equivalence class $[w] \in \langle \alpha, \beta \rangle$.

- For a word w in {α, β, α⁻¹, β⁻¹} consider the minimum number of unmatched letters over all non-crossing matchings.
- ▶ **Proposition:** This depends only on the equivalence class $[w] \in \langle \alpha, \beta \rangle$.
- ► Hence we have an induced length I_{WC} : $\langle \alpha, \beta \rangle \rightarrow [0, \infty)$.

- For a word w in {α, β, α⁻¹, β⁻¹} consider the minimum number of unmatched letters over all non-crossing matchings.
- ▶ **Proposition:** This depends only on the equivalence class $[w] \in \langle \alpha, \beta \rangle$.
- Hence we have an induced length $I_{WC} : \langle \alpha, \beta \rangle \rightarrow [0, \infty).$
- **Proposition:** The length I_{WC} is conjugacy-invariant.

Proposition: The Watson-Crick length is the maximal normalized conjugacy-invariant length, i.e.,

- Proposition: The Watson-Crick length is the maximal normalized conjugacy-invariant length, i.e.,
 - let *I* : ⟨α, β⟩ → [0, ∞) be any conjugacy-invariant pseudo-length,

- Proposition: The Watson-Crick length is the maximal normalized conjugacy-invariant length, i.e.,
 - ▶ let $I : \langle \alpha, \beta \rangle \rightarrow [0, \infty)$ be any conjugacy-invariant pseudo-length,
 - ▶ assume $I(\alpha) \leq 1$ and $I(\beta) \leq 1$, then

- Proposition: The Watson-Crick length is the maximal normalized conjugacy-invariant length, i.e.,
 - ▶ let $I : \langle \alpha, \beta \rangle \rightarrow [0, \infty)$ be any conjugacy-invariant pseudo-length,
 - ▶ assume $I(\alpha) \leq 1$ and $I(\beta) \leq 1$, then

► for all
$$g \in \langle \alpha, \beta \rangle$$
, $I(g) \leq I_{WC}(g)$.

- Proposition: The Watson-Crick length is the maximal normalized conjugacy-invariant length, i.e.,
 - ▶ let $I : \langle \alpha, \beta \rangle \rightarrow [0, \infty)$ be any conjugacy-invariant pseudo-length,
 - ▶ assume $I(\alpha) \leq 1$ and $I(\beta) \leq 1$, then
 - ► for all $g \in \langle \alpha, \beta \rangle$, $I(g) \leq I_{WC}(g)$.
- ► However I_{WC} is not homogeneous; if $g = \alpha[\alpha, \beta]$, then $I_{WC}(g) = 3$ but $I_{WC}(g^2) = 4$.

• Groups with torsion have no homogeneous length functions. Namely, if $g^n = e$,

$$l(g)=\frac{l(g^n)}{n}=\frac{l(e)}{n}=0.$$

• Groups with torsion have no homogeneous length functions. Namely, if $g^n = e$,

$$l(g)=\frac{l(g^n)}{n}=\frac{l(e)}{n}=0.$$

(Fritz) Homogeneity implies conjugacy invariant.

• Groups with torsion have no homogeneous length functions. Namely, if $g^n = e$,

$$l(g)=\frac{l(g^n)}{n}=\frac{l(e)}{n}=0.$$

 (Fritz) Homogeneity implies conjugacy invariant.
 (Tao, Khare) Homogeneity follows from *l*(g²) ≥ 2*l*(g) for all g ∈ ⟨α, β⟩.

Over the first 4-5 days after the question was posted,
 there were many (failed, but instructive) attempts to construct such length functions;

- there were many (failed, but instructive) attempts to construct such length functions;
- in particular I focussed on I_{WC} (along with homogenization, Kobayashi construction);

- there were many (failed, but instructive) attempts to construct such length functions;
- in particular I focussed on *I_{WC}* (along with homogenization, Kobayashi construction);
- the failures of various constructions led to the feeling that $I(\alpha\beta\alpha^{-1}\beta^{-1}) = 0$ for homogeneous pseudo-lengths;

- there were many (failed, but instructive) attempts to construct such length functions;
- in particular I focussed on I_{WC} (along with homogenization, Kobayashi construction);
- the failures of various constructions led to the feeling that $I(\alpha\beta\alpha^{-1}\beta^{-1}) = 0$ for homogeneous pseudo-lengths;
- increasingly sharp bounds and methods of combining bounds were found, but there was no visible path to proving $I(\alpha\beta\alpha^{-1}\beta^{-1}) = 0$.

- there were many (failed, but instructive) attempts to construct such length functions;
- in particular I focussed on I_{WC} (along with homogenization, Kobayashi construction);
- the failures of various constructions led to the feeling that $I(\alpha\beta\alpha^{-1}\beta^{-1}) = 0$ for homogeneous pseudo-lengths;
- ▶ increasingly sharp bounds and methods of combining bounds were found, but there was no visible path to proving $I(\alpha\beta\alpha^{-1}\beta^{-1}) = 0$.
- On Thursday morning I posted a proof of a computer-assisted bound on $I(\alpha\beta\alpha^{-1}\beta^{-1})$.

Proof of a bound on $I(\alpha\beta\alpha^{-1}\beta^{-1})$ for I a homogeneous, conjugacy invariant length function with $I(\alpha), I(\beta) \leq 1$.

Proof of a bound on $I(\alpha\beta\alpha^{-1}\beta^{-1})$ for I a homogeneous, conjugacy invariant length function with $I(\alpha), I(\beta) \leq 1$.

- ▶ |ā| ≤ 1.0
- $\blacktriangleright |\bar{b}\bar{a}b| \leq 1.0 \text{ using } |\bar{a}| \leq 1.0$
- $arepsilon |ar{b}| \leq 1.0$
- $\blacktriangleright ||a\bar{b}\bar{a}| \leq 1.0 \text{ using } |\bar{b}| \leq 1.0$
- … (119 lines)
- $\begin{array}{l|l} |ab\bar{a}\bar{b}ab\bar{a}$
- ▶ $|ab\bar{a}\bar{b}| \leq 0.8152734778121775$ using $|ab\bar{a}\bar{b}ab\bar{a}\bar{$

Proof of a bound on $I(\alpha\beta\alpha^{-1}\beta^{-1})$ for I a homogeneous, conjugacy invariant length function with $I(\alpha), I(\beta) \leq 1$.

- ▶ |ā| ≤ 1.0
- $\blacktriangleright |\bar{b}\bar{a}b| \leq 1.0 \text{ using } |\bar{a}| \leq 1.0$
- ert $|ar{b}| \leq 1.0$
- $\blacktriangleright |a\bar{b}\bar{a}| \leq 1.0 \text{ using } |\bar{b}| \leq 1.0$
- … (119 lines)
- $\begin{array}{l|l} |ab\bar{a}\bar{b}ab\bar{a}$
- ▶ $|ab\bar{a}\bar{b}| \leq 0.8152734778121775$ using $|ab\bar{a}bab\bar$

i.e., $I(\alpha, \beta) \le 0.8152734778121775$

The computer-generated proof was studied by Pace Nielsen, who extracted the internal repetition trick. The computer-generated proof was studied by Pace Nielsen, who extracted the internal repetition trick.

This was extended by Pace Nielsen and Tobias Fritz and generalized by Terence Tao.

- The computer-generated proof was studied by Pace Nielsen, who extracted the internal repetition trick.
- This was extended by Pace Nielsen and Tobias Fritz and generalized by Terence Tao.
- From this Fritz obtained the key lemma:

- The computer-generated proof was studied by Pace Nielsen, who extracted the internal repetition trick.
- This was extended by Pace Nielsen and Tobias Fritz and generalized by Terence Tao.
- From this Fritz obtained the key lemma:

Lemma

Let
$$f(m,k) = l(x^m[x,y]^k)$$
. Then $f(m,k) \le rac{f(m-1,k) + f(m+1,k-1)}{2}$.

- The computer-generated proof was studied by Pace Nielsen, who extracted the internal repetition trick.
- This was extended by Pace Nielsen and Tobias Fritz and generalized by Terence Tao.
- From this Fritz obtained the key lemma:

Lemma

Let
$$f(m, k) = l(x^{m}[x, y]^{k})$$
. Then

$$f(m,k) \leq rac{f(m-1,k) + f(m+1,k-1)}{2}.$$

• Using Probability, Tao showed $I(lphaeta lpha^{-1}eta^{-1}) = 0.$

The Theorem and Proof

Theorem

For any group G, every homogeneous pseudo-length $I: G \to \mathbb{R}$ is the pullback of a homogeneous pseudo-length on the abelianization G/[G, G].

Theorem

For any group G, every homogeneous pseudo-length $I: G \to \mathbb{R}$ is the pullback of a homogeneous pseudo-length on the abelianization G/[G, G]. Corollary If G is not abelian (e.g. $G = \mathbb{F}_2$) there is no homogeneous length function on G.

Internal Repetition trick

Lemma

If
$$x = s(wy)s^{-1} = t(zw^{-1})t^{-1}$$
, we have $l(x) \le \frac{l(y)+l(z)}{2}$.

Internal Repetition trick

Internal Repetition trick

Lemma
If
$$x = s(wy)s^{-1} = t(zw^{-1})t^{-1}$$
, we have $l(x) \le \frac{l(y)+l(z)}{2}$.
 $l(x^nx^n) = l(s(wy)^ns^{-1}t(zw^{-1})^nt^{-1})$
 $\le n(l(y) + l(z)) + 2(l(s) + l(t))$
 $\boxed{swywywy...\overline{st}...z\overline{w}z\overline{w}z\overline{w}\overline{t}}$
 \blacktriangleright Use $l(x) = \frac{l(x^nx^n)}{2n}$ and take limits.

The key inequality

▶ The above lemma says that if $x \sim wy$ and $x \sim zw^{-1}$, then $l(x) \leq \frac{l(y)+l(z)}{2}$.

The above lemma says that if x ~ wy and x ~ zw⁻¹, then l(x) ≤ l(y)+l(z)/2.
 We can now deduce f(m, k) ≤ f(m-1,k)+f(m+1,k-1)/2.

- The above lemma says that if x ~ wy and x ~ zw⁻¹, then l(x) ≤ l(y)+l(z)/2.
 We can now deduce f(m, k) ≤ f(m-1,k)+f(m+1,k-1)/2.
- Namely, observe that $x^m[x, y]^k$ is conjugate to both $x(x^{m-1}[x, y]^k)$ and $(y^{-1}x^m[x, y]^{k-1}xy)x^{-1}$.

 \blacktriangleright The above lemma says that if $x \sim wy$ and $x \sim zw^{-1}$, then $l(x) \leq \frac{l(y)+l(z)}{2}$. ▶ We can now deduce $f(m, k) \leq \frac{f(m-1,k)+f(m+1,k-1)}{2}$. > Namely, observe that $x^m[x, y]^k$ is conjugate to both $x(x^{m-1}[x, y]^k)$ and $(y^{-1}x^m[x, y]^{k-1}xy)x^{-1}$. • Hence $I(x^m[x, y]^k) \leq \frac{I(x^{m-1}[x, y]^k) + I(y^{-1}x^m[x, y]^{k-1}xy)}{2}$.

 \blacktriangleright The above lemma says that if $x \sim wy$ and $x \sim zw^{-1}$, then $l(x) \leq \frac{l(y)+l(z)}{2}$. ▶ We can now deduce $f(m, k) \leq \frac{f(m-1,k)+f(m+1,k-1)}{2}$. > Namely, observe that $x^m[x, y]^k$ is conjugate to both $x(x^{m-1}[x, y]^k)$ and $(y^{-1}x^m[x, y]^{k-1}xy)x^{-1}$. • Hence $l(x^m[x, y]^k) \leq \frac{l(x^{m-1}[x, y]^k) + l(y^{-1}x^m[x, y]^{k-1}xy)}{2}$. ► Since $y^{-1}x^m[x, y]^{k-1}xy$ is conjugate to $x^{m+1}[x, y]^{k-1}$, the claim follows

► The inequality f(m, k) ≤ f(m-1,k)+f(m+1,k-1)/2 can be interpreted as the average of f being non-decreasing along the random walk on Z² where we move by (-1,0) or (1,-1) with equal probability.

The inequality f(m, k) ≤ f(m-1,k)+f(m+1,k-1)/2 can be interpreted as the average of f being non-decreasing along the random walk on Z² where we move by (-1,0) or (1,-1) with equal probability.
 The average displacement of a step is (0, -1/2).

- The inequality f(m, k) ≤ f(m-1,k)+f(m+1,k-1)/2 can be interpreted as the average of f being non-decreasing along the random walk on Z² where we move by (-1,0) or (1,-1) with equal probability.
 The average displacement of a step is (0, -1/2).
- Hence taking 2n steps starting at (0, n) gives an upper bound for f(0, 2n) = l((αβα⁻¹β⁻¹)ⁿ) by the average length for a distribution centered at the origin.

- ► The inequality f(m, k) ≤ f(m-1,k)+f(m+1,k-1)/2 can be interpreted as the average of f being non-decreasing along the random walk on Z² where we move by (-1,0) or (1,-1) with equal probability.
- The average displacement of a step is (0, -1/2).
- Hence taking 2n steps starting at (0, n) gives an upper bound for f(0, 2n) = I((αβα⁻¹β⁻¹)ⁿ) by the average length for a distribution centered at the origin.
- This was bounded using the Chebyshev inequality.

Computer Bounds and Proofs

Fix a conjugacy-invariant, normalized length function $I : \langle \alpha, \beta \rangle \to \mathbb{R}$, i.e. with $I(\alpha), I(\beta) \leq 1$.

Fix a conjugacy-invariant, normalized length function *I*: ⟨α, β⟩ → ℝ, i.e. with *I*(α), *I*(β) ≤ 1.
Let g = ξ₁ξ₂...ξ_n with n ≥ 1.

Fix a conjugacy-invariant, normalized length function I: ⟨α, β⟩ → ℝ, i.e. with I(α), I(β) ≤ 1.
Let g = ξ₁ξ₂...ξ_n with n ≥ 1.
But the triangle inequality.

By the triangle inequality

$$I(g) \leq 1 + I(\xi_2\xi_3\ldots\xi_n).$$

Fix a conjugacy-invariant, normalized length function $I: \langle \alpha, \beta \rangle \to \mathbb{R}$, i.e. with $I(\alpha), I(\beta) < 1$. \blacktriangleright Let $g = \xi_1 \xi_2 \dots \xi_n$ with n > 1. By the triangle inequality $I(g) < 1 + I(\xi_2\xi_3\dots\xi_n).$ If $\xi_k = \xi_1^{-1}$, by the triangle inequality and conjugacy invariance $I(g) < I(\xi_2\xi_3\dots\xi_{k-1}) + I(\xi_{k+1}\xi_{k+2}\dots\xi_n)$ as $I(\xi_1\xi_2...\xi_k) = I(\xi_1\xi_2...\xi_{k-1}\xi_1^{-1}) = I(\xi_2\xi_2...\xi_{k-1}).$

For $g \in F$, compute L(g) such that $I(g) \leq L(g)$ by: If g = e is the empty word, define L(g) := 0.

For g ∈ F, compute L(g) such that I(g) ≤ L(g) by:
If g = e is the empty word, define L(g) := 0.
If g = ξ₁ has exactly one letter, define L(g) := 1.

For g ∈ F, compute L(g) such that l(g) ≤ L(g) by:
If g = e is the empty word, define L(g) := 0.
If g = ξ₁ has exactly one letter, define L(g) := 1.
If g = ξ₁ξ₂...ξ_n has at least two letters:

For g ∈ F, compute L(g) such that l(g) ≤ L(g) by:
If g = e is the empty word, define L(g) := 0.
If g = ξ₁ has exactly one letter, define L(g) := 1.
If g = ξ₁ξ₂...ξ_n has at least two letters:
let λ₀ = 1 + L(ξ₂ξ₃...ξ_n) (computed recursively).

For $g \in F$, compute L(g) such that $I(g) \leq L(g)$ by: \blacktriangleright If g = e is the empty word, define L(g) := 0. ▶ If $g = \xi_1$ has exactly one letter, define L(g) := 1. ▶ If $g = \xi_1 \xi_2 \dots \xi_n$ has at least two letters: let $\lambda_0 = 1 + L(\xi_2\xi_3\dots\xi_n)$ (computed recursively). let Λ be the (possibly empty) set $\{L(\xi_2\xi_3\dots\xi_{k-1})+L(\xi_{k+1}\xi_{k+2}\dots\xi_n): 2 \le k \le n, \xi_k = \xi_1^{-1}\}$

For $g \in F$, compute L(g) such that $I(g) \leq L(g)$ by: \blacktriangleright If g = e is the empty word, define L(g) := 0. ▶ If $g = \xi_1$ has exactly one letter, define L(g) := 1. ▶ If $g = \xi_1 \xi_2 \dots \xi_n$ has at least two letters: let $\lambda_0 = 1 + L(\xi_2\xi_3\dots\xi_n)$ (computed recursively). let Λ be the (possibly empty) set $\{L(\xi_2\xi_3\dots\xi_{k-1})+L(\xi_{k+1}\xi_{k+2}\dots\xi_n): 2 \le k \le n, \xi_k = \xi_1^{-1}\}$ • define $L(g) := \min(\{\lambda_0\} \cup \Lambda)$.

For $g \in F$, compute L(g) such that $I(g) \leq L(g)$ by: \blacktriangleright If g = e is the empty word, define L(g) := 0. ▶ If $g = \xi_1$ has exactly one letter, define L(g) := 1. ▶ If $g = \xi_1 \xi_2 \dots \xi_n$ has at least two letters: let $\lambda_0 = 1 + L(\xi_2\xi_3\dots\xi_n)$ (computed recursively). \triangleright let Λ be the (possibly empty) set $\{L(\xi_2\xi_3\dots\xi_{k-1})+L(\xi_{k+1}\xi_{k+2}\dots\xi_n): 2 \le k \le n, \xi_k = \xi_1^{-1}\}$ • define $L(g) := \min(\{\lambda_0\} \cup \Lambda)$. \triangleright In general, we may also have elements g for which L(g) is given (or previously computed).

For chosen g ∈ ⟨α, β⟩, n ≥ 1, homogeneity gives I(g) ≤ L(gⁿ)/n for I a normalized, homogeneous length function on ⟨α, β⟩.

- For chosen g ∈ ⟨α, β⟩, n ≥ 1, homogeneity gives I(g) ≤ L(gⁿ)/n for I a normalized, homogeneous length function on ⟨α, β⟩.
- Further, we can use this (in general improved) bound (as L(g)) recursively in the above algorithm.

- For chosen g ∈ ⟨α, β⟩, n ≥ 1, homogeneity gives I(g) ≤ L(gⁿ)/n for I a normalized, homogeneous length function on ⟨α, β⟩.
- Further, we can use this (in general improved) bound (as L(g)) recursively in the above algorithm.
- We computed such bounds in interactive sessions.

- For chosen g ∈ ⟨α, β⟩, n ≥ 1, homogeneity gives I(g) ≤ L(gⁿ)/n for I a normalized, homogeneous length function on ⟨α, β⟩.
- Further, we can use this (in general improved) bound (as L(g)) recursively in the above algorithm.
- We computed such bounds in interactive sessions.
- The words used were α[α, β]^k, chosen based on non-homogeneity of the function I_{WC}.

From Bounds to Proofs

Rather than (recursively) generating just bounds, we can recursively generate proofs of bounds.

From Bounds to Proofs

Rather than (recursively) generating just bounds, we can recursively generate proofs of bounds.
 These were in terms of domain specific foundations, embeddable in Homotopy Type Theory.

From Bounds to Proofs

- Rather than (recursively) generating just bounds, we can recursively generate proofs of bounds.
- These were in terms of domain specific foundations, embeddable in Homotopy Type Theory.
- Objects of mathematics, meta-mathematics and algorithms/programs are all first-class, e.g., proofs could be arguments and values of functions.

- Rather than (recursively) generating just bounds, we can recursively generate proofs of bounds.
- These were in terms of domain specific foundations, embeddable in Homotopy Type Theory.
- Objects of mathematics, meta-mathematics and algorithms/programs are all first-class, e.g., proofs could be arguments and values of functions.
- In this case, we can instead view our algorithm as just keeping track of relevant inequalities.

Quasification

The function *I* : *G* → [0, ∞) is a quasi-pseudo-length function if there exists *c* ∈ ℝ such that *l*(*gh*) ≤ *l*(*g*) + *l*(*h*) + *c*, for all *g*, *h* ∈ *G*.

Quasification

The function *l* : *G* → [0, ∞) is a quasi-pseudo-length function if there exists *c* ∈ ℝ such that *l*(*gh*) ≤ *l*(*g*) + *l*(*h*) + *c*, for all *g*, *h* ∈ *G*.
We see that for a homogeneous quasi-pseudo-length function, *l*([*x*, *y*]) ≤ 4*c* for all *x*, *y* ∈ *G*.

Quasification

 \blacktriangleright The function $I: G \rightarrow [0, \infty)$ is a quasi-pseudo-length function if there exists $c \in \mathbb{R}$ such that $l(gh) \leq l(g) + l(h) + c$, for all $g, h \in G$. ▶ We see that for a homogeneous quasi-pseudo-length function, $l([x, y]) \leq 4c$ for all $x, y \in G$. For a group with vanishing stable commutator length, e.g. $G = SI(3, \mathbb{Z})$, any homogeneous quasi-pseudo-length function is bounded distance from a pullback from G/[G, G].

How much did the proof depend on expert knowledge?

- How much did the proof depend on expert knowledge?
- Was finding the proof a fluke or was it likely to be found? How much trial and error was needed?

- How much did the proof depend on expert knowledge?
- Was finding the proof a fluke or was it likely to be found? How much trial and error was needed?
- What about rounding off errors?

- How much did the proof depend on expert knowledge?
- Was finding the proof a fluke or was it likely to be found? How much trial and error was needed?
- What about rounding off errors?
- Are there any general lessons for finding computer proofs, especially without expert knowledge?

- How much did the proof depend on expert knowledge?
- Was finding the proof a fluke or was it likely to be found? How much trial and error was needed?
- What about rounding off errors?
- Are there any general lessons for finding computer proofs, especially without expert knowledge?
- ▶ We can use the families $g_k = \alpha[\alpha, \beta]^k$, k = 1, 2, 6and use $l(g_k) \leq \frac{l(g_k)^n}{n}$ with n = 1, 2, ..., 20.

This work became PolyMath 14, and has been published in Algebra & Number Theory (with an account of the computer proving published in the Journal of Automated Reasoning).

- This work became PolyMath 14, and has been published in Algebra & Number Theory (with an account of the computer proving published in the Journal of Automated Reasoning).
- A computer generated but human readable proof was read, understood, generalized and abstracted by mathematicians to obtain the key lemma in an interesting mathematical result;

- This work became PolyMath 14, and has been published in Algebra & Number Theory (with an account of the computer proving published in the Journal of Automated Reasoning).
- A computer generated but human readable proof was read, understood, generalized and abstracted by mathematicians to obtain the key lemma in an interesting mathematical result;

- This work became PolyMath 14, and has been published in Algebra & Number Theory (with an account of the computer proving published in the Journal of Automated Reasoning).
- A computer generated but human readable proof was read, understood, generalized and abstracted by mathematicians to obtain the key lemma in an interesting mathematical result; this is perhaps the first time this has happened.