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On Saturday, December 16, 2017, Terrence Tao

posted on his blog a question, from Apoorva Khare.

Is there a homogeneous, (conjugacy invariant) length
function on the free group on two generators?

Six days later, this was answered in a collaboration

involving several mathematicians (and a computer).

This the story of the answer and its discovery.
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Length functions

A pseudo-length function on a group G is a function
[: G — [0,00) such that
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A pseudo-length function on a group G is a function
[: G — [0,00) such that
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Length functions

A pseudo-length function on a group G is a function
[: G — [0,00) such that

I(e) = 0, where e € G is the identity,
I(g™1) = I(g) for all g € G (symmetry),
I(gh) < I(g) + I(h) for all g, h € G (the triangle
inequality).
A pseudo-length function / on a group G is said to be
a length function if /(g) > 0 for all g € G \ {e}.
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Length functions

A pseudo-length function on a group G is a function
[: G — [0,00) such that
I(e) = 0, where e € G is the identity,
I(g71) = I(g) for all g € G (symmetry),
I(gh) < I(g) + I(h) for all g, h € G (the triangle
inequality).

A pseudo-length function / on a group G is said to be
a length function if /(g) > 0 for all g € G \ {e}.

Norms on vector spaces, such as /(x,y) = \/x? + y?

on R?, are length functions.
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Homogeneity and Conjugacy invariance

A pseudo-length function / on a group G is said to be
homogeneous if (g") = nl(g) for all g € G, n € Z.
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Norms are homogeneous — indeed Apoorva's question
was motivated by generalizing stochastic inequalities
from Vector spaces with norms.
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Homogeneity and Conjugacy invariance

A pseudo-length function / on a group G is said to be
homogeneous if /(g") = nl(g) for all g € G, n € Z.
Norms are homogeneous — indeed Apoorva's question
was motivated by generalizing stochastic inequalities
from Vector spaces with norms.

A pseudo-length function / on a group G is said to be
conjugacy invariant if /(ghg™') = I(h) for all

g,h € G —if G is abelian every pseudo-length
function is conjugacy-invariant.
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Lengths and Metrics

Given a length [ : G — IR on a group G, we can
define a metric on G by d(x, y) = I(x"1y).
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This is left-invariant, i.e., d(gx, gy) = d(x, y) for all
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Conversely any left invariant metric gives a length

I(g) :=d(e, g), with d(x,y) = I(x"ty).
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Lengths and Metrics

Given a length [ : G — IR on a group G, we can
define a metric on G by d(x, y) = I(x"1y).

This is left-invariant, i.e., d(gx, gy) = d(x, y) for all
g,x,y €G.

Conversely any left invariant metric gives a length
I(g) :=d(e, g), with d(x,y) = I(x"ty).

The metric d associated to / is right-invariant, (i.e.,
d(xg,yg) = d(x,y) for all g,x,y € G) if and only if
| is conjugacy invariant.

Siddhartha Gadgil Lengths on Free groups 8 /35



The Question

Siddhartha Gadgil Lengths on Free groups 9 /35



The Question

Is there a function | : {«, B) — [0, 00) on the free group
on two generators such that

Siddhartha Gadgil Lengths on Free groups 9 /35



The Question

Is there a function | : {«, B) — [0, 00) on the free group
on two generators such that

I(g) = 0 if and only if g = e (positivity).

Siddhartha Gadgil Lengths on Free groups 9/35



The Question

Is there a function | : {«, B) — [0, 00) on the free group
on two generators such that

I(g) = 0 if and only if g = e (positivity).
l(g™") = I(g) for all g € (., B).

Siddhartha Gadgil Lengths on Free groups 9/35



The Question

Is there a function | : {«, B) — [0, 00) on the free group
on two generators such that

I(g) = 0 if and only if g = e (positivity).
I(g7%) = I(g) for all g € (., B).
I(gh) < I(g) + I(h) for all g, h € {(a, 3).

Siddhartha Gadgil Lengths on Free groups 9/35



The Question

Is there a function | : {«, B) — [0, 00) on the free group
on two generators such that

I(g) = 0 if and only if g = e (positivity).
I(g71) = I(g) forall g € {(, B).

I(gh) < I(g) + I(h) for all g, h € {(a, 3).
I(ghg™') = I(h) for all g, h € {a, 3).
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The Question

Is there a function | : {«, B) — [0, 00) on the free group
on two generators such that

I(g) = 0 if and only if g = e (positivity).
I(g71) = I(g) forall g € {(, B).
I(gh) < I(g)+ I(h) for all g, h € {a, ).
I(ghg™) = I(h) for all g, h € (a, B).
I(g") = nl(g) for all g € (o, 3), n € Z.
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Word length

The word length 1,(g) of an element g € («, 3) is
the number of letters in the unique reduced word
representing g.
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the number of letters in the unique reduced word
representing g.

The word length is not conjugacy invariant as

W(aBat) =3 41=I(8).
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Word length

The word length 1,(g) of an element g € («, 3) is
the number of letters in the unique reduced word
representing g.

The word length is not conjugacy invariant as
w(afa ) =3 1= I(8).
It is also not homogeneous as

l((aBa™)?) = I, (af?a™t) = 4 # 2l (afa™t).
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A pullback length

Consider the abelianization homomorphism
ab: (o, 8) — 72,
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A pullback length

Consider the abelianization homomorphism

ab: (o, 8) — 72,

The length L2(x, y) = |x| + |y| on Z? induces a
homogeneous, conjugacy-invariant pseudo-length

I(g) = Iz2(ab(g)) on (a, ).
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A pullback length

Consider the abelianization homomorphism

ab: (o, 8) — 72,

The length L2(x, y) = |x| + |y| on Z? induces a
homogeneous, conjugacy-invariant pseudo-length
I(g) = Iz2(ab(g)) on (a, ).

However this is not a length as

ab(aBa1p71) = (0,0), I(aBa~tB71) = 0.
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Pullback lengths

In general, let ¢ : G — H be a homomorphism and
Iy - H— [0,00) is a pseudo-length on H.
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We get a pseudo-length Iz on G given by

lc(g) = IH(¢(g))-

Homogeneity and conjugacy-invariance are inherited
by I from Iy.
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Pullback lengths

In general, let ¢ : G — H be a homomorphism and
Iy - H— [0,00) is a pseudo-length on H.

We get a pseudo-length Iz on G given by

lc(g) = IH(¢(g))-

Homogeneity and conjugacy-invariance are inherited
by I from Iy.

But /¢ satisfies positivity if and only if /y|,(c) satisfies
positivity and ¢ is injective.
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Non-crossing matchings

Consider non-crossing matchings for a word in the
letters o, 3, a1, and B7L;

()

aababaabab

letters can only be matched with their inverses,
there are no crossings.
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Non-crossing matchings

Consider non-crossing matchings for a word in the
letters o, 3, a1, and B7L;

()

aababaabab

letters can only be matched with their inverses,
there are no crossings.

The energy is the number of unmatched letters.
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Watson-Crick length

For aword w in {a, 3, a !, 37!} consider the
minimum number of unmatched letters over all
non-crossing matchings.
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Woatson-Crick length

For aword w in {a, 3, a !, 37!} consider the
minimum number of unmatched letters over all

non-crossing matchings.
Proposition: This depends only on the equivalence
class [w] € (a, ).
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Woatson-Crick length

For aword w in {a, 3, a !, 37!} consider the
minimum number of unmatched letters over all
non-crossing matchings.

Proposition: This depends only on the equivalence
class [w] € (a, ).

Hence we have an induced length

lwe - <Oz,ﬁ> — [0,00)
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Woatson-Crick length

For aword w in {a, 3, a !, 37!} consider the
minimum number of unmatched letters over all
non-crossing matchings.

Proposition: This depends only on the equivalence
class [w] € (a, ).

Hence we have an induced length

lwe - <Oz,ﬁ> — [0,00)

Proposition: The length /¢ is conjugacy-invariant.
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Woatson-Crick length

Proposition: The Watson-Crick length is the
maximal normalized conjugacy-invariant length, i.e.,
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Proposition: The Watson-Crick length is the
maximal normalized conjugacy-invariant length, i.e.,
let /: (o, B) — [0, 00) be any conjugacy-invariant

pseudo-length,
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Woatson-Crick length

Proposition: The Watson-Crick length is the
maximal normalized conjugacy-invariant length, i.e.,
let /: (o, B) — [0, 00) be any conjugacy-invariant

pseudo-length,
assume /(a) < 1 and /($) <1, then
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Woatson-Crick length

Proposition: The Watson-Crick length is the
maximal normalized conjugacy-invariant length, i.e.,
let /: (o, B) — [0, 00) be any conjugacy-invariant

pseudo-length,
assume /(a) < 1 and /($) <1, then

for all g € {a, 8), 1(g) < lwc(8).
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Woatson-Crick length

Proposition: The Watson-Crick length is the
maximal normalized conjugacy-invariant length, i.e.,
let /: (o, B) — [0, 00) be any conjugacy-invariant

pseudo-length,
assume /(a) < 1 and /($) <1, then

for all g € (o, 8), I(g) < lwc(g)
However Iyyc is not homogeneous; if g = afa, f],

then /Wc(g) — 3 but /WC(g2) =4,

()

aababaabab
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Some observations

Groups with torsion have no homogeneous length
functions. Namely, if g" = e,
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Some observations

Groups with torsion have no homogeneous length
functions. Namely, if g" = e,

(Fritz) Homogeneity implies conjugacy invariant.
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Some observations

Groups with torsion have no homogeneous length
functions. Namely, if g" = e,

Fritz) Homogeneity implies conjugacy invariant.

(
(Tao Khare) Homogeneity follows from
I(g?) > 2I(g) for all g € {(a, ).
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The Quest

Over the first 4-5 days after the question was posted,
there were many (failed, but instructive) attempts to
construct such length functions;
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Over the first 4-5 days after the question was posted,
there were many (failed, but instructive) attempts to
construct such length functions;
in particular | focussed on /¢ (along with
homogenization, Kobayashi construction);
the failures of various constructions led to the feeling
that /(aBa~1371) = 0 for homogeneous pseudo-lengths;
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The Quest

Over the first 4-5 days after the question was posted,
there were many (failed, but instructive) attempts to
construct such length functions;
in particular | focussed on /¢ (along with
homogenization, Kobayashi construction);
the failures of various constructions led to the feeling
that /(aBa~1371) = 0 for homogeneous pseudo-lengths;
increasingly sharp bounds and methods of combining
bounds were found, but there was no visible path to

proving /(aBa~1571) = 0.
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The Quest

Over the first 4-5 days after the question was posted,
there were many (failed, but instructive) attempts to
construct such length functions;
in particular | focussed on /¢ (along with
homogenization, Kobayashi construction);
the failures of various constructions led to the feeling
that /(aBa~1371) = 0 for homogeneous pseudo-lengths;
increasingly sharp bounds and methods of combining
bounds were found, but there was no visible path to
proving /(aBa~1571) = 0.

On Thursday morning | posted a proof of a

computer-assisted bound on /(aSa~t371).
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Proof which | posted online

Proof of a bound on /(aBa~t371) for | a homogeneous, conjugacy
invariant length function with /(«), /(8) < 1.
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Proof which | posted online

Proof of a bound on /(aBa~t371) for | a homogeneous, conjugacy
invariant length function with /(«), /(8) < 1.

|al <1.0

|bab| < 1.0 using |3] < 1.0

bl <1.0

|aba| < 1.0 using |b| < 1.0

|ababab| < 2.0 using |aba| < 1.0 and |bab| < 1.0

... (119 lines)
|abababababababababababababababababababababababababababababababababab| <
13.859649122807017 using |aba| <1.0and _
|babababababababababababababababababababababababababababababababab| <
12.859649122807017

|abab| < 0.8152734778121775 using
|abababababababababababababababababababababababababababababababababab| <
13.859649122807017 by taking 17th power.
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Proof which | posted online

Proof of a bound on /(aBa~t371) for | a homogeneous, conjugacy
invariant length function with /(«), /(8) < 1.

|al <1.0

|bab| < 1.0 using |3] < 1.0

bl <1.0

|aba| < 1.0 using |b| < 1.0

|ababab| < 2.0 using |aba| < 1.0 and |bab| < 1.0

... (119 lines)
|abababababababababababababababababababababababababababababababababab| <
13.859649122807017 using |aba| <1.0and _
|babababababababababababababababababababababababababababababababab| <
12.859649122807017

|abab| < 0.8152734778121775 using
|abababababababababababababababababababababababababababababababababab| <
13.859649122807017 by taking 17th power.

ie., I(o, B) < 0.8152734778121775
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The computer-generated proof was studied by Pace
Nielsen, who extracted the internal repetition trick.
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The computer-generated proof was studied by Pace
Nielsen, who extracted the internal repetition trick.

This was extended by Pace Nielsen and Tobias Fritz
and generalized by Terence Tao.

From this Fritz obtained the key lemma:

Let f(m, k) = I(x™[x, y]¥). Then

flm—1,k)+f(m+1,k—1)
5 :

f(m k) <
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The computer-generated proof was studied by Pace
Nielsen, who extracted the internal repetition trick.

This was extended by Pace Nielsen and Tobias Fritz
and generalized by Terence Tao.

From this Fritz obtained the key lemma:

Let f(m, k) = I(x™[x, y]¥). Then

F(m. k) < f(m—l,k)+f(m+1,k—1).

2
Using Probability, Tao showed /(a3a~1371) = 0.
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The Theorem and Proof
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The main results

For any group G, every homogeneous pseudo-length
| : G — R is the pullback of a homogeneous
pseudo-length on the abelianization G /|G, G].
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The main results

For any group G, every homogeneous pseudo-length
[ : G — R is the pullback of a homogeneous
pseudo-length on the abelianization G /|G, G].

If G is not abelian (e.g. G = TF,) there is no homogeneous
length function on G.
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Internal Repetition trick

If x = s(wy)s™t = t(zw 1)t 7, we have I(x) < /(y);/(z).
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Internal Repetition trick

If x = s(wy)s™t = t(zw 1)t 7, we have I(x) < /(y);/(z).
I(x"x") = I(s(wy)"s " t(zw )"t ")
< n(l(y) +1(2)) +2(/(s) + 1(t))

A

SWYWYWy...5t...zwzwzwt
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Internal Repetition trick

If x = s(wy)s™t = t(zw 1)t 7, we have I(x) < /(y);/(z).
I(x"x") = I(s(wy)"s " t(zw )"t ")
< n(l(y) +1(2)) +2(/(s) + 1(t))

A

SWYWYWy...5t...zwzwzwt

Use /(x) = % and take limits.
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The key inequality

The above lemma says that if x ~ wy and x ~ zw ™!,

I(y)+I(z
then /(x) < w
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The key inequality

The above lemma says that if x ~ wy and x ~ zw ™!,

I(y)+I(z
then /(x) < w

We can now deduce f(m, k) < f(m_l’k)+£(m+1’k_l).
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The key inequality

The above lemma says that if x ~ wy and x ~ zw ™!,

then /(x) < w
We can now deduce f(m, k) < f(m_l’k)+g(m+l’k_l).

Namely, observe that x™[x, y] is conjugate to both
x(x™ 2 [x, y]¥) and (y X7,y ey )x
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The key inequality

1

The above lemma says that if x ~ wy and x ~ zw™
then /(x) < w

We can now deduce f(m, k) < f(m_l’k)+g(m+l’k_l).

Namely, observe that x™[x, y] is conjugate to both
x(x™[x, y]¥) and (y X7, y]F ey )x

Hence /(x™[x, y]¥) < I(Xm_l[X>Y]k)—l-/()z/_lxm[x,y]k_lxy).
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The key inequality

The above lemma says that if x ~ wy and x ~ zw ™!,

then /(x) < w
We can now deduce f(m, k) < f(m_l’k)+g(m+l’k_l).

Namely, observe that x™[x, y] is conjugate to both

x(x™[x, y]¥) and (y X7, y]F ey )x

Hence /(x™[x, y]¥) < I(Xm_l[X>Y]k)—l-/()z/_lxm[x,y]k_lxy).

Since y~1x™[x, y]*"1xy is conjugate to x™1[x, y]*~1,
the claim follows.
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Tao's probability theory argument

The inequality f(m, k) < f(m_l’k)+£(m+1’k_1) can be

interpreted as the average of f being non-decreasing

along the random walk on Z? where we move by
(—1,0) or (1,—1) with equal probability.
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Tao's probability theory argument

The inequality f(m, k) < f(m_l’k)+£(m+1’k_1) can be
interpreted as the average of f being non-decreasing
along the random walk on Z? where we move by
(—1,0) or (1,—1) with equal probability.

The average displacement of a step is (0, —1/2).
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Tao's probability theory argument

The inequality f(m, k) < f(m_l’k)+£(m+1’k_1) can be
interpreted as the average of f being non-decreasing
along the random walk on Z? where we move by
(—1,0) or (1,—1) with equal probability.

The average displacement of a step is (0, —1/2).

Hence taking 2n steps starting at (0, n) gives an upper
bound for £(0,2n) = I((aBa~1371)") by the average
length for a distribution centered at the origin.
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Tao's probability theory argument

The inequality f(m, k) < f(m_l’k)+£(m+1’k_1) can be

interpreted as the average of f being non-decreasing

along the random walk on Z? where we move by
(—1,0) or (1,—1) with equal probability.

The average displacement of a step is (0, —1/2).
Hence taking 2n steps starting at (0, n) gives an upper
bound for £(0,2n) = I((aBa~1371)") by the average
length for a distribution centered at the origin.

This was bounded using the Chebyshev inequality.
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Computer Bounds and Proofs
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Bounds from Conjugacy invariance

Fix a conjugacy-invariant, normalized length function

[:{a,B) — R, ie with [(«),I(5) < 1.
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Bounds from Conjugacy invariance

Fix a conjugacy-invariant, normalized length function

[:{a,B) — R, ie with [(«),I(5) < 1.
Let g = &1& ... &, with n > 1.
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Bounds from Conjugacy invariance

Fix a conjugacy-invariant, normalized length function

[:{a,B) — R, ie with [(«),I(5) < 1.
Let g = &1& ... &, with n > 1.

By the triangle inequality

I(g) <1+ 1(&&---&n)-
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Bounds from Conjugacy invariance

Fix a conjugacy-invariant, normalized length function

[:{a,B) — R, ie with [(«),I(5) < 1.
Let g = &1& ... &, with n > 1.

By the triangle inequality
I(g) <14 1(&& .- &)

If & = 51_1, by the triangle inequality and conjugacy
invariance

I(g) < I(&&3 .. Ek—1) + 1(Ekt1ék+2 - - - &n)
as (616 ... &) = 1(&& . &ai&t ) = (66 - - &),
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The recursive algorithm

For g € F, compute L(g) such that /(g) < L(g) by:
If g = e is the empty word, define L(g) := 0.
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The recursive algorithm

For g € F, compute L(g) such that /(g) < L(g) by:
If g = e is the empty word, define L(g) := 0.
If g = &1 has exactly one letter, define L(g) := 1.
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The recursive algorithm

For g € F, compute L(g) such that /(g) < L(g) by:
If g = e is the empty word, define L(g) := 0.

If g = &1 has exactly one letter, define L(g) := 1.
If g = &1& ... &, has at least two letters:
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The recursive algorithm

For g € F, compute L(g) such that /(g) < L(g) by:
If g = e is the empty word, define L(g) := 0.

If g = &1 has exactly one letter, define L(g) := 1.
If g = &1& ... &, has at least two letters:
let \g = 14 L(&&5...&,) (computed recursively).
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The recursive algorithm

For g € F, compute L(g) such that /(g) < L(g) by:
If g = e is the empty word, define L(g) := 0.

If g = &1 has exactly one letter, define L(g) := 1.
If g = &1& ... &, has at least two letters:
let \g = 14 L(&&5...&,) (computed recursively).
let A be the (possibly empty) set

{L(&26&5 . k1) FL(Eksrbhin . &) 2 < k< n & = &1}
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The recursive algorithm

For g € F, compute L(g) such that /(g) < L(g) by:
If g = e is the empty word, define L(g) := 0.

If g = &1 has exactly one letter, define L(g) := 1.
If g = &1& ... &, has at least two letters:
let \g = 14 L(&&5...&,) (computed recursively).
let A be the (possibly empty) set

{L(£2€3 .. -fk_1)+L(fk+1fk+2 .. fn) 2< k<n&= 51—1}
define L(g) := min({\o} UAN).
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The recursive algorithm

For g € F, compute L(g) such that /(g) < L(g) by:
If g = e is the empty word, define L(g) := 0.

If g = &1 has exactly one letter, define L(g) := 1.
If g = &1& ... &, has at least two letters:
let \g = 14 L(&&5...&,) (computed recursively).
let A be the (possibly empty) set

{L(&&s .. Cho1)HL(kirbhsn- - &) 12 < k< n & =&}
define L(g) := min({ o} UA).

In general, we may also have elements g for which

L(g) is given (or previously computed).
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Ad hoc bounds using Homogeneity

For chosen g € (a, B), n > 1, homogeneity gives
I(g) < L(g")/n for | a normalized, homogeneous
length function on {(«, 3).

Siddhartha Gadgil Lengths on Free groups 30 /35



Ad hoc bounds using Homogeneity

For chosen g € (a, B), n > 1, homogeneity gives
I(g) < L(g")/n for | a normalized, homogeneous
length function on («, 3).

Further, we can use this (in general improved) bound
(as L(g)) recursively in the above algorithm.
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Ad hoc bounds using Homogeneity

For chosen g € (a, B), n > 1, homogeneity gives
I(g) < L(g")/n for | a normalized, homogeneous
length function on («, 3).

Further, we can use this (in general improved) bound
(as L(g)) recursively in the above algorithm.

We computed such bounds in interactive sessions.
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Ad hoc bounds using Homogeneity

For chosen g € (a, B), n > 1, homogeneity gives
I(g) < L(g")/n for | a normalized, homogeneous
length function on {(«, 3).

Further, we can use this (in general improved) bound
(as L(g)) recursively in the above algorithm.

We computed such bounds in interactive sessions.

The words used were afa, 8]%, chosen based on
non-homogeneity of the function /.
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From Bounds to Proofs

Rather than (recursively) generating just bounds, we
can recursively generate proofs of bounds.
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From Bounds to Proofs

Rather than (recursively) generating just bounds, we
can recursively generate proofs of bounds.

These were in terms of domain specific foundations,
embeddable in Homotopy Type Theory.
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From Bounds to Proofs

Rather than (recursively) generating just bounds, we
can recursively generate proofs of bounds.

These were in terms of domain specific foundations,
embeddable in Homotopy Type Theory.

Objects of mathematics, meta-mathematics and
algorithms/programs are all first-class, e.g., proofs
could be arguments and values of functions.
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From Bounds to Proofs

Rather than (recursively) generating just bounds, we
can recursively generate proofs of bounds.

These were in terms of domain specific foundations,
embeddable in Homotopy Type Theory.

Objects of mathematics, meta-mathematics and
algorithms/programs are all first-class, e.g., proofs
could be arguments and values of functions.

In this case, we can instead view our algorithm as just
keeping track of relevant inequalities.
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Epilogue
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Quasification

The function / : G — [0, 00) is a quasi-pseudo-length
function if there exists ¢ € R such that

I(gh) < I(g) +I(h)+c, forall g, h € G.
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Quasification

The function / : G — [0, 00) is a quasi-pseudo-length
function if there exists ¢ € R such that

I(gh) < I(g) +I(h)+c, forall g, h € G.

We see that for a homogeneous quasi-pseudo-length
function, /([x,y]) < 4c for all x,y € G.
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Quasification

The function / : G — [0, 00) is a quasi-pseudo-length
function if there exists ¢ € R such that

I(gh) < I(g) +I(h)+c, forall g, h € G.

We see that for a homogeneous quasi-pseudo-length
function, /([x,y]) < 4c for all x,y € G.

For a group with vanishing stable commutator length,
e.g. G = 5/(3,7Z), any homogeneous
quasi-pseudo-length function is bounded distance

from a pullback from G/[G, G].
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Questions about the computer proof

How much did the proof depend on expert
knowledge?
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Questions about the computer proof

How much did the proof depend on expert

knowledge?
Was finding the proof a fluke or was it likely to be
found? How much trial and error was needed?
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Questions about the computer proof

How much did the proof depend on expert
knowledge?

Was finding the proof a fluke or was it likely to be
found? How much trial and error was needed?

What about rounding off errors?
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Questions about the computer proof

How much did the proof depend on expert
knowledge?

Was finding the proof a fluke or was it likely to be
found? How much trial and error was needed?
What about rounding off errors?

Are there any general lessons for finding computer
proofs, especially without expert knowledge?
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Questions about the computer proof

How much did the proof depend on expert
knowledge?

Was finding the proof a fluke or was it likely to be
found? How much trial and error was needed?
What about rounding off errors?

Are there any general lessons for finding computer
proofs, especially without expert knowledge?

We can use the families g, = ofa, B]%, k = 1,2,6
and use /(gx) < X&)% with n=1,2,...,20.
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Afterword

This work became PolyMath 14, and has been
published in Algebra & Number Theory (with an
account of the computer proving published in the
Journal of Automated Reasoning).
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Afterword

This work became PolyMath 14, and has been
published in Algebra & Number Theory (with an
account of the computer proving published in the
Journal of Automated Reasoning).

A computer generated but human readable proof was
read, understood, generalized and abstracted by
mathematicians to obtain the key lemma in an
interesting mathematical result;
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Afterword

This work became PolyMath 14, and has been
published in Algebra & Number Theory (with an
account of the computer proving published in the
Journal of Automated Reasoning).

A computer generated but human readable proof was
read, understood, generalized and abstracted by
mathematicians to obtain the key lemma in an
interesting mathematical result;
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Afterword

This work became PolyMath 14, and has been
published in Algebra & Number Theory (with an
account of the computer proving published in the
Journal of Automated Reasoning).

A computer generated but human readable proof was
read, understood, generalized and abstracted by
mathematicians to obtain the key lemma in an
interesting mathematical result; this is perhaps the
first time this has happened.
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