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I On Saturday, December 16, 2017, Terrence Tao

posted on his blog a question, from Apoorva Khare.

Question
Is there a homogeneous, (conjugacy invariant) length

function on the free group on two generators?

I Six days later, this was answered in a collaboration

involving several mathematicians (and a computer).

I This the story of the answer and its discovery.
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The Question
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Length functions

I A pseudo-length function on a group G is a function
l : G → [0,∞) such that

I l(e) = 0, where e ∈ G is the identity,
I l(g−1) = l(g) for all g ∈ G (symmetry),
I l(gh) ≤ l(g) + l(h) for all g , h ∈ G (the triangle

inequality).

I A pseudo-length function l on a group G is said to be

a length function if l(g) > 0 for all g ∈ G \ {e}.
I Norms on vector spaces, such as l(x , y) =

√
x2 + y 2

on R2, are length functions.
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Homogeneity and Conjugacy invariance

I A pseudo-length function l on a group G is said to be

homogeneous if l(gn) = nl(g) for all g ∈ G , n ∈ Z.

I Norms are homogeneous – indeed Apoorva’s question

was motivated by generalizing stochastic inequalities

from Vector spaces with norms.

I A pseudo-length function l on a group G is said to be

conjugacy invariant if l(ghg−1) = l(h) for all

g , h ∈ G

– if G is abelian every pseudo-length

function is conjugacy-invariant.
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Lengths and Metrics

I Given a length l : G → R on a group G , we can

define a metric on G by d(x , y) = l(x−1y).

I This is left-invariant, i.e., d(gx , gy) = d(x , y) for all

g , x , y ∈ G .

I Conversely any left invariant metric gives a length

l(g) := d(e, g), with d(x , y) = l(x−1y).

I The metric d associated to l is right-invariant, (i.e.,

d(xg , yg) = d(x , y) for all g , x , y ∈ G ) if and only if

l is conjugacy invariant.
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The Question

Question (Apoorva Khare via Terence Tao)

Is there a function l : 〈α, β〉 → [0,∞) on the free group

on two generators such that

I l(g) = 0 if and only if g = e (positivity).

I l(g−1) = l(g) for all g ∈ 〈α, β〉.
I l(gh) ≤ l(g) + l(h) for all g , h ∈ 〈α, β〉.
I l(ghg−1) = l(h) for all g , h ∈ 〈α, β〉.
I l(gn) = nl(g) for all g ∈ 〈α, β〉, n ∈ Z.
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Some lengths
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Word length

I The word length lw(g) of an element g ∈ 〈α, β〉 is
the number of letters in the unique reduced word

representing g.

I The word length is not conjugacy invariant as

lw(αβα−1) = 3 6= 1 = l(β).

I It is also not homogeneous as

lw((αβα−1)2) = lw(αβ2α−1) = 4 6= 2lw(αβα−1).
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A pullback length

I Consider the abelianization homomorphism

ab : 〈α, β〉 → Z2.

I The length lZ2(x , y) = |x | + |y | on Z2 induces a

homogeneous, conjugacy-invariant pseudo-length

l̄(g) = lZ2(ab(g)) on 〈α, β〉.
I However this is not a length as

ab(αβα−1β−1) = (0, 0), l̄(αβα−1β−1) = 0.

Siddhartha Gadgil Lengths on Free groups 12 / 35



A pullback length

I Consider the abelianization homomorphism

ab : 〈α, β〉 → Z2.

I The length lZ2(x , y) = |x | + |y | on Z2 induces a

homogeneous, conjugacy-invariant pseudo-length

l̄(g) = lZ2(ab(g)) on 〈α, β〉.

I However this is not a length as

ab(αβα−1β−1) = (0, 0), l̄(αβα−1β−1) = 0.

Siddhartha Gadgil Lengths on Free groups 12 / 35



A pullback length

I Consider the abelianization homomorphism

ab : 〈α, β〉 → Z2.

I The length lZ2(x , y) = |x | + |y | on Z2 induces a

homogeneous, conjugacy-invariant pseudo-length

l̄(g) = lZ2(ab(g)) on 〈α, β〉.
I However this is not a length as

ab(αβα−1β−1) = (0, 0), l̄(αβα−1β−1) = 0.

Siddhartha Gadgil Lengths on Free groups 12 / 35



Pullback lengths

I In general, let ϕ : G → H be a homomorphism and

lH : H → [0,∞) is a pseudo-length on H .

I We get a pseudo-length lG on G given by

lG (g) = lH(ϕ(g)).

I Homogeneity and conjugacy-invariance are inherited

by lG from lH .

I But lG satisfies positivity if and only if lH |φ(G ) satisfies

positivity and ϕ is injective.

Siddhartha Gadgil Lengths on Free groups 13 / 35



Pullback lengths

I In general, let ϕ : G → H be a homomorphism and

lH : H → [0,∞) is a pseudo-length on H .

I We get a pseudo-length lG on G given by

lG (g) = lH(ϕ(g)).

I Homogeneity and conjugacy-invariance are inherited

by lG from lH .

I But lG satisfies positivity if and only if lH |φ(G ) satisfies

positivity and ϕ is injective.

Siddhartha Gadgil Lengths on Free groups 13 / 35



Pullback lengths

I In general, let ϕ : G → H be a homomorphism and

lH : H → [0,∞) is a pseudo-length on H .

I We get a pseudo-length lG on G given by

lG (g) = lH(ϕ(g)).

I Homogeneity and conjugacy-invariance are inherited

by lG from lH .

I But lG satisfies positivity if and only if lH |φ(G ) satisfies

positivity and ϕ is injective.

Siddhartha Gadgil Lengths on Free groups 13 / 35



Pullback lengths

I In general, let ϕ : G → H be a homomorphism and

lH : H → [0,∞) is a pseudo-length on H .

I We get a pseudo-length lG on G given by

lG (g) = lH(ϕ(g)).

I Homogeneity and conjugacy-invariance are inherited

by lG from lH .

I But lG satisfies positivity if and only if lH |φ(G ) satisfies

positivity and ϕ is injective.

Siddhartha Gadgil Lengths on Free groups 13 / 35



Non-crossing matchings

I Consider non-crossing matchings for a word in the

letters α, β, α−1, and β−1;

I letters can only be matched with their inverses,
I there are no crossings.

I The energy is the number of unmatched letters.
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Watson-Crick length

I For a word w in {α, β, α−1, β−1} consider the

minimum number of unmatched letters over all

non-crossing matchings.

I Proposition: This depends only on the equivalence

class [w ] ∈ 〈α, β〉.
I Hence we have an induced length

lWC : 〈α, β〉 → [0,∞).

I Proposition: The length lWC is conjugacy-invariant.
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Watson-Crick length

I Proposition: The Watson-Crick length is the
maximal normalized conjugacy-invariant length, i.e.,

I let l : 〈α, β〉 → [0,∞) be any conjugacy-invariant
pseudo-length,

I assume l(α) ≤ 1 and l(β) ≤ 1, then
I for all g ∈ 〈α, β〉, l(g) ≤ lWC (g).

I However lWC is not homogeneous; if g = α[α, β],

then lWC (g) = 3 but lWC (g 2) = 4.
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Some observations

I Groups with torsion have no homogeneous length

functions. Namely, if gn = e,

l(g) =
l(gn)

n
=

l(e)

n
= 0.

I (Fritz) Homogeneity implies conjugacy invariant.

I (Tao, Khare) Homogeneity follows from

l(g 2) ≥ 2l(g) for all g ∈ 〈α, β〉.
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The Quest

I Over the first 4-5 days after the question was posted,
I there were many (failed, but instructive) attempts to

construct such length functions;

I in particular I focussed on lWC (along with
homogenization, Kobayashi construction);

I the failures of various constructions led to the feeling
that l(αβα−1β−1) = 0 for homogeneous pseudo-lengths;

I increasingly sharp bounds and methods of combining
bounds were found, but there was no visible path to
proving l(αβα−1β−1) = 0.

I On Thursday morning I posted a proof of a

computer-assisted bound on l(αβα−1β−1).
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Proof which I posted online

Proof of a bound on l(αβα−1β−1) for l a homogeneous, conjugacy
invariant length function with l(α), l(β) ≤ 1.

I |ā| ≤ 1.0

I |b̄āb| ≤ 1.0 using |ā| ≤ 1.0

I |b̄| ≤ 1.0

I |ab̄ā| ≤ 1.0 using |b̄| ≤ 1.0

I |āb̄abāb̄| ≤ 2.0 using |āb̄a| ≤ 1.0 and |bāb̄| ≤ 1.0

I ... (119 lines)

I |abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄| ≤
13.859649122807017 using |abā| ≤ 1.0 and
|b̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄| ≤
12.859649122807017

I |abāb̄| ≤ 0.8152734778121775 using
|abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄abāb̄| ≤
13.859649122807017 by taking 17th power.

i.e., l(α, β) ≤ 0.8152734778121775
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13.859649122807017 using |abā| ≤ 1.0 and
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I The computer-generated proof was studied by Pace

Nielsen, who extracted the internal repetition trick.

I This was extended by Pace Nielsen and Tobias Fritz

and generalized by Terence Tao.

I From this Fritz obtained the key lemma:

Lemma
Let f (m, k) = l(xm[x , y ]k). Then

f (m, k) ≤ f (m − 1, k) + f (m + 1, k − 1)

2
.

I Using Probability, Tao showed l(αβα−1β−1) = 0.
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The Theorem and Proof
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The main results

Theorem
For any group G , every homogeneous pseudo-length

l : G → R is the pullback of a homogeneous

pseudo-length on the abelianization G/[G ,G ].

Corollary
If G is not abelian (e.g. G = F2) there is no homogeneous

length function on G .
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Internal Repetition trick

Lemma
If x = s(wy)s−1 = t(zw−1)t−1, we have l(x) ≤ l(y)+l(z)

2 .

I
l(xnxn) = l(s(wy)ns−1t(zw−1)nt−1)

≤ n(l(y) + l(z)) + 2(l(s) + l(t))

I Use l(x) = l(xnxn)
2n and take limits.
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The key inequality

I The above lemma says that if x ∼ wy and x ∼ zw−1,

then l(x) ≤ l(y)+l(z)
2 .

I We can now deduce f (m, k) ≤ f (m−1,k)+f (m+1,k−1)
2 .

I Namely, observe that xm[x , y ]k is conjugate to both

x(xm−1[x , y ]k) and (y−1xm[x , y ]k−1xy)x−1.

I Hence l(xm[x , y ]k) ≤ l(xm−1[x ,y ]k)+l(y−1xm[x ,y ]k−1xy)
2 .

I Since y−1xm[x , y ]k−1xy is conjugate to xm+1[x , y ]k−1,

the claim follows.
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Tao’s probability theory argument

I The inequality f (m, k) ≤ f (m−1,k)+f (m+1,k−1)
2 can be

interpreted as the average of f being non-decreasing

along the random walk on Z2 where we move by

(−1, 0) or (1,−1) with equal probability.

I The average displacement of a step is (0,−1/2).

I Hence taking 2n steps starting at (0, n) gives an upper

bound for f (0, 2n) = l((αβα−1β−1)n) by the average

length for a distribution centered at the origin.

I This was bounded using the Chebyshev inequality.
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Computer Bounds and Proofs
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Bounds from Conjugacy invariance

I Fix a conjugacy-invariant, normalized length function

l : 〈α, β〉 → R, i.e. with l(α), l(β) ≤ 1.

I Let g = ξ1ξ2 . . . ξn with n ≥ 1.

I By the triangle inequality

l(g) ≤ 1 + l(ξ2ξ3 . . . ξn).

I If ξk = ξ−11 , by the triangle inequality and conjugacy
invariance

l(g) ≤ l(ξ2ξ3 . . . ξk−1) + l(ξk+1ξk+2 . . . ξn)

as l(ξ1ξ2 . . . ξk) = l(ξ1ξ2 . . . ξk−1ξ
−1
1 ) = l(ξ2ξ2 . . . ξk−1).
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I Let g = ξ1ξ2 . . . ξn with n ≥ 1.

I By the triangle inequality

l(g) ≤ 1 + l(ξ2ξ3 . . . ξn).
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The recursive algorithm

For g ∈ F , compute L(g) such that l(g) ≤ L(g) by:
I If g = e is the empty word, define L(g) := 0.

I If g = ξ1 has exactly one letter, define L(g) := 1.
I If g = ξ1ξ2 . . . ξn has at least two letters:

I let λ0 = 1 + L(ξ2ξ3 . . . ξn) (computed recursively).
I let Λ be the (possibly empty) set

{L(ξ2ξ3 . . . ξk−1)+L(ξk+1ξk+2 . . . ξn) : 2 ≤ k ≤ n, ξk = ξ−11 }
I define L(g) := min({λ0} ∪ Λ).

I In general, we may also have elements g for which

L(g) is given (or previously computed).
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Ad hoc bounds using Homogeneity

I For chosen g ∈ 〈α, β〉, n ≥ 1, homogeneity gives

l(g) ≤ L(gn)/n for l a normalized, homogeneous

length function on 〈α, β〉.

I Further, we can use this (in general improved) bound

(as L(g)) recursively in the above algorithm.

I We computed such bounds in interactive sessions.

I The words used were α[α, β]k , chosen based on

non-homogeneity of the function lWC .
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From Bounds to Proofs

I Rather than (recursively) generating just bounds, we

can recursively generate proofs of bounds.

I These were in terms of domain specific foundations,

embeddable in Homotopy Type Theory.

I Objects of mathematics, meta-mathematics and

algorithms/programs are all first-class, e.g., proofs

could be arguments and values of functions.

I In this case, we can instead view our algorithm as just

keeping track of relevant inequalities.
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Epilogue
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Quasification

I The function l : G → [0,∞) is a quasi-pseudo-length

function if there exists c ∈ R such that

l(gh) ≤ l(g) + l(h) + c , for all g , h ∈ G .

I We see that for a homogeneous quasi-pseudo-length

function, l([x , y ]) ≤ 4c for all x , y ∈ G .

I For a group with vanishing stable commutator length,

e.g. G = Sl(3,Z), any homogeneous

quasi-pseudo-length function is bounded distance

from a pullback from G/[G ,G ].
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Questions about the computer proof

I How much did the proof depend on expert

knowledge?

I Was finding the proof a fluke or was it likely to be

found? How much trial and error was needed?
I What about rounding off errors?
I Are there any general lessons for finding computer

proofs, especially without expert knowledge?
I We can use the families gk = α[α, β]k , k = 1, 2, 6

and use l(gk) ≤ l(gk)n

n with n = 1, 2, . . . , 20.
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Afterword

I This work became PolyMath 14, and has been

published in Algebra & Number Theory (with an

account of the computer proving published in the

Journal of Automated Reasoning).

I A computer generated but human readable proof was

read, understood, generalized and abstracted by

mathematicians to obtain the key lemma in an

interesting mathematical result;

this is perhaps the

first time this has happened.
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