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Topological rigidity

Maps ϕ,ψ : X → Y between topological spaces are homotopic if
ϕ can be continuously deformed to ψ.
A map f : X → Y is said to be a homotopy equivalence if there is
a map g : Y → X so that f ◦ g and g ◦ f are homotopic to the
identities on Y and X , respectively.

Question (Topological rigidity)

Is a given homotopy equivalence f : X → Y homotopic to a
homeomorphism.

Rn and Rm are homotopy equivalent but not homeomorphic if
n 6= m.

Theorem (Knesser, Nielsen, Dehn)

Any homotopy equivalence f : Σ1 → Σ2 between compact surfaces
without boundary is homotopic to a homeomoprhism.
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Compact surfaces with boundary

The 3-holed sphere and the 1-holed torus are homotopy
equivalent but not homeomorphic.

In this case of compact surfaces, a characterization is:

Theorem (Main theorem)

A homotopy equivalence f : Σ1 → Σ2 between compact, oriented
surfaces with boundary is homotopic to an orientation-preserving
homeomorphism if and only if it preserves the Goldman bracket.

The Goldman bracket is connected to string topology and hence
to Floer homology.

Question
What happens in the case of open surfaces?
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The Goldman bracket

Let α, β ⊂ Σ be smooth closed curves on an oriented surface Σ
intersecting transversally in double points.

We can associate a sign to each intersection point.
We can resolve each intersection point to get a closed curve.
The Goldman bracket is the formal sum of these closed curves
with the given sign.
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The Goldman bracket

For a surface Σ, let C(Σ) be the set of homotopy classes of
curves on Σ, and let 〈α〉 denote the equivalence class of a closed
curve α.
Let α, β ⊂ Σ be smooth closed curves on an oriented surface Σ
intersecting transversally in double points.
If p ∈ α ∩ β, then α and β can be viewed as loops beginning and
ending at p.
The loop α ∗p β is the loop α followed by the loop β (both based
at p).
We can also associate a sign εp = ±1 to the intersection point p.
The Goldman bracket is defined by

[α, β] =
∑

p∈α∩β

εp〈α ∗p β〉. (1)
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Goldman’s remarkable theorems I

Theorem (Goldman I)

If α ∼ α′ and β ∼ β′, then

[α, β] = [α′, β′] ∈ Z[C(Σ)].

Corollary

The Goldman bracket gives a well-defined bilinear function

Z[C(Σ)]× Z[C(Σ)]→ Z[C(Σ)].
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Goldman’s remarkable theorem II

Theorem (Goldman II)

The Goldman bracket [·, ·] : Z[C(Σ)]× Z[C(Σ)]→ Z[C(Σ)] is a Lie
bracket, i.e.,

1 [x , y ] + [y , x ] = 0.(Skew symmetry)
2 [[x , y ], z] + [[y , z], x ] + [[z, x ], y ] = 0. (Jacobi identity)

Question

Is Z[C(Σ)] finitely generated as a Lie Algebra (possibly after replacing
Z by R)?

Question

Is Z[C(Σ)] generated as a Lie algebra by simple curves α ⊂ Σ?
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Goldman’s remarkable theorem III

Theorem (Goldman III)

If α ⊂ Σ is a simple closed curve and β is a closed curve, then
[α, β] = 0 if and only if β ∼ β′ such that α ∩ β′ = φ.

Question
What is the kernel of the Goldman bracket?

By the above theorem, if Σ is a closed surface, then a closed curve
α ⊂ Σ is in the kernel if and only if it is homotopically trivial.
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Peripheral structure and the Goldman bracket

Let Σ be a compact surface (possibly) with boundary.

Definition
A closed curve α ⊂ Σ is peripheral if it is homotopic to a curve
α′ ⊂ ∂Σ.

By Goldman III and some well known geometric topology,

Lemma

A closed curve α ⊂ Σ is peripheral if and only if [α, β] = 0 for all
closed curves β.

This is useful because of

Theorem (Nielsen)

A homotopy equivalence f : Σ1 → Σ2 between compact surfaces is
homotopic to a homeomorphism if and only if whenever α ⊂ Σ1 is
peripheral, so is f (α) ⊂ Σ2.
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Proof of the main theorem

Let f : Σ1 → Σ2 be a homotopy equivalence between compact
surfaces with boundary such that for all x , y ∈ C(Σ1), we have

f∗([x , y ]) = [f∗(x), f∗(y)].

By the above lemma, if α ⊂ Σ1 is peripheral, so is f (α) ⊂ Σ2.
It follows by Nielsen’s theorem that f is homotopic to a
homeomorphism, which we can see is orientation preserving.
The converse is easy.

Question

Is every Lie Algebra isomorphism ϕ : Z[C(Σ1)]→ Z[C(Σ2)] induced by
a homeomorphism?

True if ϕ is induced by a homotopy equivalence.
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