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Topological rigidity

@ Maps ¢,y : X — Y between topological spaces are homotopic if
o can be continuously deformed to .

o
& E B
Siddhartha Gadgil The Goldman bracket characterizes homeomorphisms



Topological rigidity

@ Maps ¢,y : X — Y between topological spaces are homotopic if
o can be continuously deformed to .

@ Amap f: X — Y is said to be a homotopy equivalence if there is
amapg: Y — X sothat fogand go f are homotopic to the
identities on Y and X, respectively.

e

P
& E B
Siddhartha Gadgil The Goldman bracket characterizes homeomorphisms



Topological rigidity

@ Maps ¢,y : X — Y between topological spaces are homotopic if
o can be continuously deformed to .

@ Amap f: X — Y is said to be a homotopy equivalence if there is
amapg: Y — X sothat fogand go f are homotopic to the
identities on Y and X, respectively.

Question (Topological rigidity)

Is a given homotopy equivalence f : X — Y homotopic to a
homeomorphism.

o
& E 3
Siddhartha Gadgil The Goldman bracket characterizes homeomorphisms



Topological rigidity

@ Maps ¢,y : X — Y between topological spaces are homotopic if
o can be continuously deformed to .

@ Amap f: X — Y is said to be a homotopy equivalence if there is
amapg: Y — X sothat fogand go f are homotopic to the
identities on Y and X, respectively.

Question (Topological rigidity)

Is a given homotopy equivalence f : X — Y homotopic to a
homeomorphism.

@ R™and R™ are homotopy equivalent but not homeomorphic if
n=m.

o
& E B
Siddhartha Gadgil The Goldman bracket characterizes homeomorphisms



Topological rigidity

@ Maps ¢,y : X — Y between topological spaces are homotopic if
o can be continuously deformed to .

@ Amap f: X — Y is said to be a homotopy equivalence if there is
amapg: Y — X sothat fogand go f are homotopic to the
identities on Y and X, respectively.

Question (Topological rigidity)

Is a given homotopy equivalence f : X — Y homotopic to a
homeomorphism.

@ R™and R™ are homotopy equivalent but not homeomorphic if
n=m.

Theorem (Knesser, Nielsen, Dehn)

Any homotopy equivalence f : ¥1 — ¥, between compact surfaces
without boundary is homotopic to a homeomoprhism.
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Compact surfaces with boundary

@ The 3-holed sphere and the 1-holed torus are homotopy
equivalent but not homeomorphic.
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Compact surfaces with boundary

@ The 3-holed sphere and the 1-holed torus are homotopy
equivalent but not homeomorphic.

@ In this case of compact surfaces, a characterization is:

Theorem (Main theorem)

A homotopy equivalence f : ¥4 — ¥, between compact, oriented
surfaces with boundary is homotopic to an orientation-preserving
homeomorphism if and only if it preserves the Goldman bracket.
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equivalent but not homeomorphic.
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Theorem (Main theorem)

A homotopy equivalence f : ¥4 — ¥, between compact, oriented
surfaces with boundary is homotopic to an orientation-preserving
homeomorphism if and only if it preserves the Goldman bracket.

@ The Goldman bracket is connected to string topology and hence
to Floer homology.
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Compact surfaces with boundary

@ The 3-holed sphere and the 1-holed torus are homotopy
equivalent but not homeomorphic.

@ In this case of compact surfaces, a characterization is:

Theorem (Main theorem)

A homotopy equivalence f : ¥4 — ¥, between compact, oriented
surfaces with boundary is homotopic to an orientation-preserving
homeomorphism if and only if it preserves the Goldman bracket.

@ The Goldman bracket is connected to string topology and hence
to Floer homology.

. Ea)
What happens in the case of open surfaces? she
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The Goldman bracket

@ Let «, 8 C X be smooth closed curves on an oriented surface ©
intersecting transversally in double points.
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@ Let «, 8 C X be smooth closed curves on an oriented surface ©
intersecting transversally in double points.
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@ We can associate a sign to each intersection point.
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The Goldman bracket

@ Let «, 8 C X be smooth closed curves on an oriented surface ©
intersecting transversally in double points.

Cerl@or)

@ We can associate a sign to each intersection point.
@ We can resolve each intersection point to get a closed curve.
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The Goldman bracket

@ Let «, 8 C X be smooth closed curves on an oriented surface ©
intersecting transversally in double points.

Cerl@or)

@ We can associate a sign to each intersection point.
@ We can resolve each intersection point to get a closed curve.

@ The Goldman bracket is the formal sum of these closed curves
with the given sign.

50,
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The Goldman bracket

@ For a surface %, let C(X) be the set of homotopy classes of
curves on ¥, and let () denote the equivalence class of a closed
curve a.
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The Goldman bracket

@ For a surface %, let C(X) be the set of homotopy classes of
curves on ¥, and let () denote the equivalence class of a closed
curve a.

@ Let o, 8 C X be smooth closed curves on an oriented surface
intersecting transversally in double points.

@ If p € an B, then o and S can be viewed as loops beginning and
ending at p.
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The Goldman bracket

@ For a surface %, let C(X) be the set of homotopy classes of
curves on ¥, and let () denote the equivalence class of a closed
curve a.

@ Let o, 8 C X be smooth closed curves on an oriented surface
intersecting transversally in double points.

@ If p € an B, then o and S can be viewed as loops beginning and
ending at p.

@ The loop « *p, 5 is the loop « followed by the loop g (both based
at p).

@ We can also associate a sign ¢, = 1 to the intersection point p.

@ The Goldman bracket is defined by

[, 8] = > eplaxpB). (1)
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Goldman’s remarkable theorems |

Theorem (Goldman 1)

Ifa ~ o and g ~ ', then

o, ] = [, B'] € ZI[C(X)].
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Goldman’s remarkable theorems |

Theorem (Goldman 1)

Ifa ~ o and g ~ ', then

o, ] = [, B'] € ZI[C(X)].

The Goldman bracket gives a well-defined bilinear function

Z[C(2)] x Z[C(¥)] — Z[C(%)].
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Goldman’s remarkable theorem Il

Theorem (Goldman II)

The Goldman bracket [-,-] : Z[C(X)] x Z[C(X)] — Z[C(X)] is a Lie
bracket, i.e.,
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Theorem (Goldman II)

The Goldman bracket [-,-] : Z[C(X)] x Z[C(X)] — Z[C(X)] is a Lie
bracket, i.e.,

@ [x,y] + [y, x] = 0.(Skew symmetry)
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Theorem (Goldman II)

The Goldman bracket [, ] : Z[C(X)] x Z[C(X)] — Z[C(T)] is a Lie
bracket, i.e.,

Q [x,y]+ [y, x] = 0.(Skew symmetry)

Q [[x,y],z] + Iy, 2], x] + [[z, x], ¥] = 0. (Jacobi identity)
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The Goldman bracket [, ] : Z[C(X)] x Z[C(X)] — Z[C(T)] is a Lie
bracket, i.e.,

Q [x,y]+ [y, x] = 0.(Skew symmetry)
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Is Z|C(X)] finitely generated as a Lie Algebra (possibly after replacing
Z byR)?
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Goldman’s remarkable theorem Il

The Goldman bracket [, ] : Z[C(X)] x Z[C(X)] — Z[C(T)] is a Lie
bracket, i.e.,

Q [x,y]+ [y, x] = 0.(Skew symmetry)

Q [[x,y],z] + Iy, 2], x] + [[z, x], ¥] = 0. (Jacobi identity)

Is Z|C(X)] finitely generated as a Lie Algebra (possibly after replacing
Z byR)?

v

Is Z[C(X)] generated as a Lie algebra by simple curves « C X ?
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Goldman’s remarkable theorem IlI

Theorem (Goldman Il1)

If « C X is a simple closed curve and 3 is a closed curve, then
[o, B] = 0 ifand only if 3 ~ B’ such thatan ' = ¢.
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Goldman’s remarkable theorem IlI

Theorem (Goldman Il1)

If « C X is a simple closed curve and 3 is a closed curve, then
[o, B] = 0 ifand only if 3 ~ B’ such thatan ' = ¢.

What is the kernel of the Goldman bracket?

By the above theorem, if ¥ is a closed surface, then a closed curve
a C X is in the kernel if and only if it is homotopically trivial.
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Peripheral structure and the Goldman bracket

@ Let X be a compact surface (possibly) with boundary.
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Peripheral structure and the Goldman bracket

@ Let X be a compact surface (possibly) with boundary.

Definition

A closed curve o C ¥ is peripheral if it is homotopic to a curve
o C OY.
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Peripheral structure and the Goldman bracket

@ Let X be a compact surface (possibly) with boundary.

Definition

A closed curve o C ¥ is peripheral if it is homotopic to a curve
o C OY.

@ By Goldman Il and some well known geometric topology,

A closed curve o C X is peripheral if and only if [o, 5] = O for all
closed curves (.

@ This is useful because of

Theorem (Nielsen)

A homotopy equivalence f : ¥y — ¥, between compact surfaces is
homotopic to a homeomorphism if and only if whenever o C ¥4 is
peripheral, so is f(a) C X». %T;
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Proof of the main theorem

@ Letf: Xy — X, be a homotopy equivalence between compact
surfaces with boundary such that for all x, y € C(X1), we have

£ (D, y1) = [F(x), £(¥)]-
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Proof of the main theorem

@ Letf: Xy — X, be a homotopy equivalence between compact
surfaces with boundary such that for all x, y € C(X1), we have

£ (D, y1) = [F(x), £(¥)]-

@ By the above lemma, if « C X is peripheral, so is f(a) C .

@ [t follows by Nielsen’s theorem that f is homotopic to a
homeomorphism, which we can see is orientation preserving.

@ The converse is easy.

Is every Lie Algebra isomorphism ¢ : Z[C(X1)] — Z|[C(X2)] induced by
a homeomorphism?
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Proof of the main theorem

@ Letf: Xy — X, be a homotopy equivalence between compact
surfaces with boundary such that for all x, y € C(X1), we have

£ (D, y1) = [F(x), £(¥)]-

@ By the above lemma, if « C X is peripheral, so is f(a) C .

@ [t follows by Nielsen’s theorem that f is homotopic to a
homeomorphism, which we can see is orientation preserving.

@ The converse is easy.

Is every Lie Algebra isomorphism ¢ : Z[C(X1)] — Z|[C(X2)] induced by
a homeomorphism?

@ True if ¢ is induced by a homotopy equivalence.
@



