into it?

sәбрә әцъ ґиә!цо әМ

## 」10 <br> цэеә



*     *         * 








$\therefore$ e oppons nenpy



人боןошон *




$$
\begin{aligned}
& \text { A-Complexes: } \\
& \text { Simplices: } \\
& \text { Definition: An } n \text {-simplex is the convex hull of } \\
& \text { a collection of points } v_{0}, v_{1}, \ldots, v_{n} \in \mathbb{R}^{N} \text { s.t. } \\
& v_{1}-v_{0}, v_{2}-v_{0}, \ldots, v_{n}-v_{0} \text { are independent vectors. } \\
& \text { CN rome integer) } \\
& \text {. We denote such an } n \text {-simplex as } \\
& \sigma=\left\langle v_{0}, v_{i}, \ldots, v_{n}>\right. \\
& \cdot \text { We assume } v_{i} \text { are ordered. } \\
& \cdot \sigma=\left\{\sum_{i=0}^{n} a_{i} v_{i}: 0 \leq a_{i} \leq 1, \sum_{i=0}^{n} a_{i}=1\right\}
\end{aligned}
$$





(ii) Each restriction of $\sigma_{\alpha}$ to a face of $\Delta^{n}$ is one of the maps $\sigma_{\beta}: \Delta^{n-1} \rightarrow X$. Here we























mannox 3 .

to
poo zydunss














$x \rightsquigarrow m$



$\prod_{0}^{\infty} \prod_{0}^{\infty} \varepsilon$
















促






$$
\begin{aligned}
& \sum_{5}^{5} \Omega \\
& \text { a }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ropobuis }
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
\text { nying } \\
\left\{\begin{array}{l}
\text { show } \\
x \leftarrow_{\square} \nabla: ?
\end{array}\right.
\end{array}\right. \\
& \text { nosung } \\
& \stackrel{?}{i} \\
& x \\
& \%
\end{aligned}
$$









$$
\begin{aligned}
& \Rightarrow \\
& \text { 今, } \\
& \text { है } \\
& \xi \\
& \frac{\S}{\delta} \\
& \text { ふ. } \\
& 010 \\
& \text { 1) }
\end{aligned}
$$






i.e.,






of
 e) $\begin{array}{cccc}1 & w & \| & 11 \\ \infty & 1 & 0\end{array}$


$\omega<$

$\circ$
8
$\square \begin{gathered}\text { ¿ } \\ \text { w }\end{gathered}$
ㄴ
$0 \begin{array}{ll}1 \\ i & \psi \\ i & \\ i\end{array}$


8
$i$
$i$
$i$
$i$


$$
\begin{aligned}
& 11 c \\
& \text { §้ } \\
& \frac{9}{9}
\end{aligned}
$$





$$
\begin{aligned}
& \text { ixmyond suy xusxy }
\end{aligned}
$$

$$
\begin{aligned}
& (x)^{2} H
\end{aligned}
$$

> 4
> $\begin{aligned} & 9 \\ & x\end{aligned}$



$$
\begin{aligned}
& \text { wsenydromes?-ison b so jopro } \\
& \text { us smenydzomsor buisupin dour }
\end{aligned}
$$


$\pm \cdots \underset{~ c ~}{2}$

bbopomon
















$0)=$

| 0 |  |
| :---: | :---: |
| 9 | - |
| + | 9 |
| -1 | + |
| -1 |  |

( $e$ e) $1+(\rho e) \perp e$
दे
दे


$\begin{array}{ll}0 & -1 \\ -1 & 9\end{array}$
$+11$
$\begin{array}{ccc}-7 & \sigma & 11 \\ 9 & 9 & 0 \\ 11 & 9 & \\ 0 & 1 & 3\end{array}$

$\cdots$
$\begin{array}{lll}n & \\ 9 & 8 \\ 1 & 6 \\ - & \\ e & 3 \\ 9 & 1 \\ - & 1\end{array}$
$\begin{array}{cccc}2 & 9 & 0 & -1 \\ 9 & 0 & a \\ 9 & 0 & 9\end{array}$
$\underset{\sim}{\sim} \quad 9^{\sigma} \quad \hat{9}-c$



$n=-1$
$T 2 \sigma)$.
$2 b_{\sigma}(\sigma-$
$-\lambda \sigma-$
$-b_{\sigma}(\partial \sigma$
$=2 \sigma-s$


11

$\sum_{i}$

$$
\begin{aligned}
& =e s \text { ianny ry } \\
& \text { nis-gry }
\end{aligned}
$$

$$
\circlearrowleft
$$

$$
\sum_{\xi_{0}}^{\lambda}
$$

$$
\delta_{8}^{8}
$$

$$
\begin{array}{ll}
\because & \mathfrak{~} \\
0 & \\
\hline
\end{array}
$$

$$
\rightarrow
$$

$$
0 \sim
$$

$$
\begin{array}{l|l}
x & \\
\zeta & \xi
\end{array}
$$

$$
\begin{aligned}
& 0 \\
& -1 \\
& + \\
& -\quad \\
& a
\end{aligned}
$$

$0 \quad 11$
$\begin{array}{cc}i \\ i & a^{2} \\ i\end{array}$
4
4

$\begin{array}{cc}n & m \\ s_{5} & n \\ \theta_{s} & n\end{array}$

$\stackrel{1}{n}\}$

S: $C_{n}(x) \longrightarrow$
T: $C_{n}(x) \longrightarrow$
space and

$((\cos ))^{-9}$


Goal: Construct $\left\{\begin{array}{l}\text {. Chain homomorphism } C_{*}(x) \rightarrow C_{*}^{u}(x) \\
\text { Chain homotopy between this } \\
\text { and the identity. }\end{array}\right.$

\[\)| $C_{*}^{u} \rightarrow C_{*}(x)$ |
| :--- |

\]

Subtlety: The number of subdivisions needed for
$\sigma(i . e, m)$, depends on $\sigma$.
Hence, if $S:=S^{m(\sigma)}(\sigma)$, m( $\sigma$, minimum number





 9
3


\[

\]



\[

\]

$$
p o q^{n} \sin \sin \theta
$$

Reduced

$$
M
$$

$$
\because M \bar{O}
$$

$$
\bigcirc
$$

$$
\begin{array}{rr}
\therefore & \check{x} \\
\therefore & X \\
\therefore . & 1
\end{array}
$$

Definition: The reduced homodogy $\tilde{H}_{*}(x)$ is the
homology of the cingmented chain complex.
For $i \geq 1, \quad \tilde{H}_{i}(x)=H_{i}(x)$
For $i=0, \tilde{H}_{0}(x)=\frac{\operatorname{ker}(\varepsilon)}{i m\left(\partial_{1}\right)}, H_{0}(x)=\frac{C_{0}(x)}{\operatorname{im}\left(\partial_{1}\right)}$
Now, $C_{0}(x)=\operatorname{ker}(\varepsilon) \oplus \mathbb{Z}$
$\left[\right.$ We have $\left.0 \rightarrow \operatorname{ker}(\varepsilon) \rightarrow C_{0}(x) \xrightarrow[\varepsilon]{\longrightarrow} \rightarrow 0\right)$
$\therefore H_{0}(x)=\frac{\operatorname{ker}(\varepsilon)+\mathbb{Z}}{i m\left(\partial_{1}\right)}=\tilde{H}_{0}(x) \oplus \mathbb{Z}$.




$$
\begin{gathered}
\text { smy } \\
\because- \\
\text { woy } \\
\text { ty } \\
707
\end{gathered}
$$


$\stackrel{\rightharpoonup}{\xi}$

hrow
?
hrous

split.




$\stackrel{\rightharpoonup}{i}$


$1<n$




$0 N$


ᄂ



| 11 | 11 |
| :---: | :---: |
| $u_{0}$ | 2 |
| 2 |  |




リ
~or
Lemma: If $f:(x, A) \rightarrow(Y, B)$ sit. $f: X \rightarrow Y$
and $f_{1 A}: A \rightarrow B$ are homotopy equivalences,
then $f_{*}: H_{*}(x, A) \simeq H_{*}(Y, B)$.
pf: Use homotopy axiom
. Exactness
. Five lemma
RR: This applies when $(X, A) \subset(Y, B)$ and
$X C Y$ and $A \subset B$ are deformation retracts,
i.e.
$H_{*}(X, A) \xrightarrow{i} H_{*}(Y, B)$.






ssonm vozsenugh? 2
roser witised $o$
0

- vordo
1
7
2
2
8
5
5
5
$\stackrel{5}{5}$
$\rho_{s}$
W
¢
$\vdots$
$\vdots$
$\zeta$
$p$
nifosurh? 2
mitisocl m
yin m
i
1
6
7
$n a$
$d$
$i$
ron $M$






0
不 $\frac{\lambda}{2}$

$$
f \backslash .
$$

$$
\begin{gathered}
\text { ns } 9 \\
\text { noyl } \\
\text { rod }
\end{gathered}
$$



11

5.

- N

$$
\begin{aligned}
& x, 2 m \operatorname{mon} 20 \\
& 1-x-u=? ~ f ?
\end{aligned}
$$

$$
\begin{aligned}
& 8 \\
& 5
\end{aligned}
$$

Cdrom
m3onzlu?


1)
un
1 in
0



$n$
5
5

$$
x y^{0}
$$

$$
\mathfrak{j}
$$

$$
\begin{array}{lll}
4 & & j \\
\pi & j & j \\
0 & \sim & j \\
\hdashline & j & j
\end{array}
$$

$$
x^{i} C_{i}^{i}+C
$$

$$
\begin{array}{lll}
\pi & i^{\prime \prime} & 1 \\
i^{\prime} & \cap \\
q^{\prime} & \ddots
\end{array}
$$



$$
\begin{aligned}
& \xi_{0} \left\lvert\, \begin{array}{c}
\zeta \\
\vdots \\
\vdots \\
\vdots \\
\vdots \\
\vdots
\end{array}\right. \\
& \text { 气 }
\end{aligned}
$$






i

$$
\grave{\jmath} \quad \downarrow
$$

$$
\left(f x_{1-4}(1003) f\left(\frac{s}{}\right)^{2}\right.
$$

$$
\sigma
$$

$\propto$




15

spherc ors
है
92 m


$$
\stackrel{\pi}{2} s \pi
$$

$D$
לे
$\stackrel{1}{n}$
$\hat{N}$
$\xi$
$\xi$

| 5 |
| :--- |
| $\xi$ |
| § |

moyds


$$
\rightarrow \underbrace{s_{n}}_{s_{s_{0}}}
$$




－ヶと

$1+2 \times$




for 20. 4no

$$
\begin{aligned}
& \quad \dot{x} \\
& \Rightarrow \\
& \Rightarrow \\
&
\end{aligned}
$$

$$
u_{w} 3 .
$$

/

$$
\begin{gathered}
\left(\sin 0-78 s_{0} 7\right) \\
c_{280} d s
\end{gathered}
$$

$$
\begin{aligned}
& \text { surg } \\
& \text { gon } \\
& \text { gry } \\
& \text { ayt }
\end{aligned}
$$



$\frac{R R:}{\infty}$
$i=1$
Cantor set is
the product topology.

$$
+\nabla_{\omega} \quad \eta_{\omega} .
$$

$$
-1+⿹_{w} \vec{k}
$$


$S^{3}=\left(D_{+}^{3} U H\right) U\left(D^{3} \backslash H \mid\right.$
Ln particular, $\pi_{1}\left(s^{3} \backslash\left(D^{2} \times s^{\prime}\right)\right)=\mathbb{Z}$
$D^{\prime 2} \times s^{\prime}$ h.e. $s^{\prime}$

s

$$
\text { S. } \underset{\substack{7 \\ \hline}}{2}
$$

$$
\begin{gathered}
\left(^{1+2 / y}\right. \\
1<- \\
\& m^{2}=
\end{gathered}
$$




$\begin{aligned}{ }_{1-4}^{x} & ={ }_{4}^{x} d e \\ & \sim x\end{aligned}$


$\Sigma$
§
$\xi$
$\xi$


9
$\vdots$
$\substack{9 \\ s}$






(k-1) L

nugranazs

## 2 2 3 3 20 20

7

$\rho$

23:




${ }_{11}^{x} \oslash$
 $\sim /, 0 \cap, s$

$\sim 2 e^{\ni 2}$
$s^{7} z^{2}$
0

11



$1 \partial A^{\circ} \partial=S=$
drow bunporytar
ao.
$1 \partial A^{\circ} \partial=S=$
dow bunponjza'
ay.
§
Co
§ $\begin{array}{ll}\Omega & \\ \text { § }\end{array}$
$\zeta$
$\xi$

ma moys $\overline{: x 3}$
y．ich mponvon

$\underset{ }{+}$
$\therefore d d$
moys
$\frac{7}{6}$
2y子
2007 dincorpo
5
${ }_{2} \infty$

nu）
moys －
xydmの－MD
s






$h_{9}$

T
$\Rightarrow \quad 6^{\circ}$
$\underset{5}{3}$


ふ．हू $\left.\begin{array}{ll}0 \\ 3 \\ 3\end{array}\right)$



rampnufs－mつ ryz









$$
\begin{aligned}
& \text { mos-i yos } \\
& \text { naion 'mondes } \\
& \text { poop smosqe 'fxaN }
\end{aligned}
$$

$$
e^{n}
$$

$$
\max ^{2 \times \sqrt{4}} \cdots
$$

$$
\begin{array}{cc}
< & < \\
\vdots & n^{n} \\
< & < \\
0 & \vdots \\
\vdots & c
\end{array}
$$

$$
\begin{aligned}
& x^{4}{ }^{4 s_{S}} n^{-} \\
& \forall \rightarrow n^{x}
\end{aligned}
$$







6
6
8
8
ryoblusy so from swisg
soñb
422
Co somosay
nH 8











$\left.\begin{array}{cc|ccc}a & 0 & n & 11 & \ddots\end{array}\right]$
$N T_{0} \underset{r^{0}}{\sim_{0}} N$
$\stackrel{n}{\sum_{s}}$
$n_{0} \rightarrow n_{-} \rightarrow n_{0} \rightarrow n^{\prime}$
$N \rightarrow N \rightarrow N_{0}^{\prime} \rightarrow N$





$$
\begin{aligned}
& \text { Cols, } \\
& \begin{array}{l}
\text { porpos } \\
\xi \cdot y=
\end{array} \\
& \text { (we2 roppre } \\
& \checkmark \\
& \text { (f) } \\
& 7 \text { ngonetopn? } \\
& \text { A }
\end{aligned}
$$



$$
\therefore \xi \underset{\xi}{\xi}
$$

$=$

$$
\begin{aligned}
& q \\
& \stackrel{s}{s} \\
& \stackrel{4}{4}
\end{aligned}
$$

sumpropry

$$
{ }_{x}^{x}-4 x=2
$$

a

$$
\begin{aligned}
& \text { 's } s \leftarrow_{n} s i 2 \\
& (\xi)(\rho) \text { bop }
\end{aligned}
$$

$$
\underbrace{w}
$$



$$
1
$$

$$
11
$$

$$
6
$$

$$
\begin{aligned}
& 7(p) \text { bop } \cdot(b) b \\
& (\xi)^{*} f \cdot(b)
\end{aligned}
$$

$$
\begin{aligned}
& \xi)^{*} f \\
& ((\xi) \cdot(b)
\end{aligned}
$$

$$
((\xi) \cdot(b)\} o p) * f
$$










