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Basic Topological questions

I Is a given homotopy equivalence f : M → N
homotopic to a homeomorphism/diffeomorphism?

I Is a map f : N → M homotopic to an embedding (or
are given maps homotopic to disjoint ones)?

I These questions are related as constructions such as
surgery and handle-addition are based on embedded
sub-manifolds.
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Surfaces and 3-manifolds

I The one-holed torus and the three-holed sphere are
homotopy equivalent but not homeomorphic.

I A homotopy equivalence f : M → N is homotopic to
a homeomorphism if and only if it preserves the
peripheral structure.

I We can also give a characterization in terms of
preserving embeddable curves.

I Similar results holds for complements of Knots and
Links in S3.
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Algebraic and Geometric topology

I The above has formulations in terms of π1, but these
are hard to work with.

I Homology, characteristic classes etc are too weak in
this context.

I The Goldman bracket and String Topology are rich
algebraic structures.

I One hopes that they have some of the power of
geometric topology - as we shall see, as well as
J -holomorphic curves etc.
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The Goldman Bracket
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The Goldman bracket

I Let α, β ⊂ Σ be smooth closed curves on an oriented
surface Σ intersecting transversally in double points.

I We can associate a sign to each intersection point.
I We can resolve each intersection point to get a closed

curve.
I The Goldman bracket is the formal sum of these

closed curves with the given sign.
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The Goldman bracket

I Let C(Σ) be the set of homotopy classes of curves on
Σ, and let 〈α〉 denote the equivalence class of a
closed curve α.

I Let α, β ⊂ Σ be smooth closed curves on an oriented
surface Σ intersecting transversally in double points.

I The Goldman bracket is defined by

[α, β] = ∑
p∈α∩β

εp〈α ∗p β〉.
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Goldman’s remarkable theorems

1. The Goldman bracket gives a well-defined map
Z[C]×Z[C]→ Z[C].

2. This makes Z[C] into a Lie Algebra.
3. If α is a simple closed curve and β a closed curve,

[α, β] = 0 if and only if β is homotopic to a curve
that is disjoint from α (Moira Chas showed that there
is no cancellation).

Siddhartha Gadgil String Top. and Geom. Decomp. 8 / 24



Goldman’s remarkable theorems

1. The Goldman bracket gives a well-defined map
Z[C]×Z[C]→ Z[C].

2. This makes Z[C] into a Lie Algebra.
3. If α is a simple closed curve and β a closed curve,

[α, β] = 0 if and only if β is homotopic to a curve
that is disjoint from α (Moira Chas showed that there
is no cancellation).

Siddhartha Gadgil String Top. and Geom. Decomp. 8 / 24



Goldman’s remarkable theorems

1. The Goldman bracket gives a well-defined map
Z[C]×Z[C]→ Z[C].

2. This makes Z[C] into a Lie Algebra.

3. If α is a simple closed curve and β a closed curve,
[α, β] = 0 if and only if β is homotopic to a curve
that is disjoint from α (Moira Chas showed that there
is no cancellation).

Siddhartha Gadgil String Top. and Geom. Decomp. 8 / 24



Goldman’s remarkable theorems

1. The Goldman bracket gives a well-defined map
Z[C]×Z[C]→ Z[C].

2. This makes Z[C] into a Lie Algebra.
3. If α is a simple closed curve and β a closed curve,

[α, β] = 0 if and only if β is homotopic to a curve
that is disjoint from α (Moira Chas showed that there
is no cancellation).

Siddhartha Gadgil String Top. and Geom. Decomp. 8 / 24



The Goldman bracket characterizes homeomorphisms

Theorem (_)
A homotopy equivalence f : Σ1 → Σ2 between compact,
oriented surfaces with boundary is homotopic to an
orientation-preserving homeomorphism if and only if it
preserves the Goldman bracket.

I

I Namely, a curve β is peripheral if and only if for every
simple closed curve α, there is a curve homotopic to
β which is disjoint from α.

I Hence β is peripheral if and only if it is central.
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The Goldman bracket and intersection numbers

Theorem (Chas, _)
Let G be a finitely generated, discrete group of Isom(H)
and let L > 0. There exists p0 such that if p and q are
integers at least one of which is larger than p0:

I 1. If x and y are hyperbolic transformations in G such that
neither is conjugate to a power of the other, with translation
length bounded above by L and such that pτ (x) 6= qτ (y)
then M [xp ,yq ]

p·q equals the geometric intersection number of x
and y, where M is the the Manhattan norm.

2. A similar statement holds for self-intersections.
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Statement of the Theorem
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String Topology

I String topology combines the intersection product
(cup product) with the loop product to give a product
on loop spaces.

I Namely, given classes x and y in the loop space of M ,
we make them transversal and take the loop product
wherever they intersect.

I This is compatible with the S1-action on the loop
space, which gives an operation ∆ on the homology
of the loop space.

Siddhartha Gadgil String Top. and Geom. Decomp. 12 / 24



String Topology

I String topology combines the intersection product
(cup product) with the loop product to give a product
on loop spaces.

I Namely, given classes x and y in the loop space of M ,
we make them transversal and take the loop product
wherever they intersect.

I This is compatible with the S1-action on the loop
space, which gives an operation ∆ on the homology
of the loop space.

Siddhartha Gadgil String Top. and Geom. Decomp. 12 / 24



String Topology

I String topology combines the intersection product
(cup product) with the loop product to give a product
on loop spaces.

I Namely, given classes x and y in the loop space of M ,
we make them transversal and take the loop product
wherever they intersect.

I This is compatible with the S1-action on the loop
space, which gives an operation ∆ on the homology
of the loop space.

Siddhartha Gadgil String Top. and Geom. Decomp. 12 / 24



String topology and Geometric Decomposition

I By the Thurston-Perelman Geometrization Theorem,
every closed, oriented, irreducible 3-manifold M has a
natural decomposition into geometric pieces.

I In joint work with Moira Chas, we show that this is
determined by the String topology on M together
with the power operations on the loop space.

I Essentially, we show that String topology determines
essential tori and their intersections with other tori
and curves.

Siddhartha Gadgil String Top. and Geom. Decomp. 13 / 24



String topology and Geometric Decomposition

I By the Thurston-Perelman Geometrization Theorem,
every closed, oriented, irreducible 3-manifold M has a
natural decomposition into geometric pieces.

I In joint work with Moira Chas, we show that this is
determined by the String topology on M together
with the power operations on the loop space.

I Essentially, we show that String topology determines
essential tori and their intersections with other tori
and curves.

Siddhartha Gadgil String Top. and Geom. Decomp. 13 / 24



String topology and Geometric Decomposition

I By the Thurston-Perelman Geometrization Theorem,
every closed, oriented, irreducible 3-manifold M has a
natural decomposition into geometric pieces.

I In joint work with Moira Chas, we show that this is
determined by the String topology on M together
with the power operations on the loop space.

I Essentially, we show that String topology determines
essential tori and their intersections with other tori
and curves.

Siddhartha Gadgil String Top. and Geom. Decomp. 13 / 24



Geometric Decompositions of
3-dimensional Manifolds
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Prime decomposition

I An oriented 3-manifold M is said to be prime if
whenever M = M1#M2, one of M1 and M2 is S3.

I Knesser-Milnor: Every closed, oriented 3-manifold
can be uniquely expressed as a connected sum
M = M1#M2# . . .#Mn of prime 3-manifolds.

I M is irreducible if every sphere S2 ⊂ M bounds a
3-ball.

I An oriented prime 3-manifold is either irreducible or
S2× S1.
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Seifert fiber spaces

I A Seifert fiber space M is an S1-bundle over a
2-dimensional orbifold.

I Concretely, this means

I M is decomposed as a disjoint union of copies of S1.
I Locally this decomposition is a product except for finitely

many exceptional fibers.
I At exceptional fibers, M (with its decompostion) is

locally isomorphic to the mapping torus of D2 ⊂ C with
respect to the map z 7→ e

2πiq
p z , where p and q are

relatively prime integers.

I These give 6 of Thurston’s 8 geometries.
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Geometric Decomposition

I Let M be an orientable, irreducible, closed 3-manifold.

I (JSJ-decomposition) There is a unique (up to
isotopy) minimal collection of disjoint tori in M such
that each component of M split along the tori is
either a Seifert fiber space or atoroidal.

I The atoroidal components are hyperbolic except when
M is a solv manifold - the mapping torus of an
Anosov map of T 2.
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Describing geometric decompositions

I Recognize closed geometric manifolds: Hyperbolic,
Seifert fibered, Solv.

I Determine a maximal family of non-parallel embedded
tori not contained in Seifert pieces (JSJ tori).

I Determine the Sefiert pieces.
I Determine when two JSJ tori are adjacent, and when

a JSJ torus is in the boundary of a Seifert piece.
I We have to refine the adjacency using homology.

Siddhartha Gadgil String Top. and Geom. Decomp. 18 / 24



Describing geometric decompositions

I Recognize closed geometric manifolds: Hyperbolic,
Seifert fibered, Solv.

I Determine a maximal family of non-parallel embedded
tori not contained in Seifert pieces (JSJ tori).

I Determine the Sefiert pieces.
I Determine when two JSJ tori are adjacent, and when

a JSJ torus is in the boundary of a Seifert piece.
I We have to refine the adjacency using homology.

Siddhartha Gadgil String Top. and Geom. Decomp. 18 / 24



Describing geometric decompositions

I Recognize closed geometric manifolds: Hyperbolic,
Seifert fibered, Solv.

I Determine a maximal family of non-parallel embedded
tori not contained in Seifert pieces (JSJ tori).

I Determine the Sefiert pieces.

I Determine when two JSJ tori are adjacent, and when
a JSJ torus is in the boundary of a Seifert piece.

I We have to refine the adjacency using homology.

Siddhartha Gadgil String Top. and Geom. Decomp. 18 / 24



Describing geometric decompositions

I Recognize closed geometric manifolds: Hyperbolic,
Seifert fibered, Solv.

I Determine a maximal family of non-parallel embedded
tori not contained in Seifert pieces (JSJ tori).

I Determine the Sefiert pieces.
I Determine when two JSJ tori are adjacent, and when

a JSJ torus is in the boundary of a Seifert piece.

I We have to refine the adjacency using homology.

Siddhartha Gadgil String Top. and Geom. Decomp. 18 / 24



Describing geometric decompositions

I Recognize closed geometric manifolds: Hyperbolic,
Seifert fibered, Solv.

I Determine a maximal family of non-parallel embedded
tori not contained in Seifert pieces (JSJ tori).

I Determine the Sefiert pieces.
I Determine when two JSJ tori are adjacent, and when

a JSJ torus is in the boundary of a Seifert piece.
I We have to refine the adjacency using homology.

Siddhartha Gadgil String Top. and Geom. Decomp. 18 / 24



Geometric Decompositions from
String Topology
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Tori and String Topology

I A torus T in M with a fixed fibration gives a natural
class in the homology of the loop space of M .

I Curves also give natural classes.
I We consider the String brackets of such classes, as

well as those obtained from these by the ∆ operation.
I We shall say that two fibered tori (or a fibered torus

and a curve) cross if some string bracket of some
power of the associated classes does not vanish.
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I We shall say that two fibered tori (or a fibered torus

and a curve) cross if some string bracket of some
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Non-cancellation

I Lemma: If an embedded torus T which is not in a
Seifert piece and is generically fibered intersects a
curve γ essentially, then it crosses γ (using γ2).

I Lemma: Two (generically fibered) tori in a Seifert
piece that intersect essentially usually cross.

I For the first lemma we consider conjugacy in
amalgamated free products and HNN extensions.

I For the second lemma, we reduce to the Goldman
bracket (our earlier theorem).
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JSJ Tori

I We say T1 ≤ T2 if whenever a curve γ crosses T1, it
crosses T2.

I We also get a corresponding equivalence relation.
I A torus T is isolated if no torus crosses T .
I An isolated torus is strongly indecomposable if

whenever T ≤ T1 + T2 with T1, T2 isolated, we have
T ≤ T1 or T ≤ T2.

I JSJ tori correspond to maximal, isolated, strongly
indecomposable classes up to equivalence.
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Seifert pieces

I A torus class T is split if T = T1 + T2 such that,

I T1 and T2 are not isolated.
I if T ′ crosses T , we can write T ′ = T ′1 + T ′2 so that T ′i

does not cross Tj if i 6= j .
I We form the graph with vertices non-split torus

classes and edges for pairs of classes that cross.
I The infinite connected components correspond to

Seifert pieces.
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JSJ in the generic case

I We define two JSJ tori T1 and T2 to be adjacent if
there is a curve γ that crosses both T1 and T2 such
that no power of γ crosses any other JSJ torus.

I We can similarly define adjacency between a JSJ
torus and a Seifert piece.

I The complementary components correspond roughly
to cliques in the adjacency graph of JSJ tori.

I We also need the cup product as JSJ tori T1 and T2
may be in the boundaries of two components.
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Description of components

I We can define doubly adjacent and loops using the
cup product and string brackets.

I If all tori are doubly adjacent, then we have exactly
two components, bounding all of them.

I Otherwise, components correspond bijectively to
collections of JSJ tori such that

I Any two tori in a collection are adjacent.
I If A and B are doubly adjacent and A is in the collection,

then so is B.
I If A, B and C are in the collection and there is a loop

ABC then there is a singleton loop, say A.
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Some degenerate cases

I We can recognize a closed Seifert fibered space M
using classes in H3 of the loop space of M with
non-vanishing String bracket, following Abbaspour.

I Tori bounding twisted I-bundles over the Klein bottle
have squares that cross no curve.

I A solv manifold has a single class T of tori, and T
does not cross any homologically trivial curve.
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