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Basic Topological questions

Is a given homotopy equivalence f : M — N
homotopic to a homeomorphism /diffeomorphism?
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Basic Topological questions

Is a given homotopy equivalence f : M — N
homotopic to a homeomorphism /diffeomorphism?

Is a map f : N — M homotopic to an embedding (or
are given maps homotopic to disjoint ones)?

These questions are related as constructions such as
surgery and handle-addition are based on embedded
sub-manifolds.
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Surfaces and 3-manifolds

The one-holed torus and the three-holed sphere are
homotopy equivalent but not homeomorphic.
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Surfaces and 3-manifolds

The one-holed torus and the three-holed sphere are
homotopy equivalent but not homeomorphic.

A homotopy equivalence f : M — N is homotopic to
a homeomorphism if and only if it preserves the
peripheral structure.

We can also give a characterization in terms of
preserving embeddable curves.

Similar results holds for complements of Knots and

Links in S3.
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Algebraic and Geometric topology

The above has formulations in terms of 77, but these
are hard to work with.
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Algebraic and Geometric topology

The above has formulations in terms of 77, but these
are hard to work with.

Homology, characteristic classes etc are too weak in
this context.

The Goldman bracket and String Topology are rich
algebraic structures.

One hopes that they have some of the power of
geometric topology - as we shall see, as well as
J-holomorphic curves etc.

Siddhartha Gadgil String Top. and Geom. Decomp. 4 /24



The Goldman Bracket

Siddhartha Gadgil String Top. and Geom. Decomp. 5/24



The Goldman bracket

Let o, B C X be smooth closed curves on an oriented
surface X intersecting transversally in double points.

&=
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We can associate a sign to each intersection point.
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We can associate a sign to each intersection point.
We can resolve each intersection point to get a closed
curve.
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The Goldman bracket

Let o, B C X be smooth closed curves on an oriented
surface X intersecting transversally in double points.

S

We can associate a sign to each intersection point.
We can resolve each intersection point to get a closed
curve.

The Goldman bracket is the formal sum of these
closed curves with the given sign.
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The Goldman bracket

Let C(X) be the set of homotopy classes of curves on
Y., and let («) denote the equivalence class of a
closed curve a.
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Let o, B C X be smooth closed curves on an oriented
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The Goldman bracket

Let C(X) be the set of homotopy classes of curves on
Y., and let («) denote the equivalence class of a
closed curve a.
Let o, B C X be smooth closed curves on an oriented
surface X intersecting transversally in double points.
The Goldman bracket is defined by

[, ] = X eplax, B).

peang
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Goldman's remarkable theorems

Siddhartha Gadgil String Top. and Geom. Decomp. 8 /24



Goldman's remarkable theorems

The Goldman bracket gives a well-defined map
Z[C) x Z|C] = Z|C].
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Goldman’s remarkable theorems

The Goldman bracket gives a well-defined map
Z[C) x Z|C] = Z|C].
This makes Z[C] into a Lie Algebra.

If o is a simple closed curve and 3 a closed curve,

[, 8] = 0 if and only if 8 is homotopic to a curve
that is disjoint from « (Moira Chas showed that there
is no cancellation).
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The Goldman bracket characterizes homeomorphisms

A homotopy equivalence f : 21 — 2, between compact,
oriented surfaces with boundary is homotopic to an
orientation-preserving homeomorphism if and only if it
preserves the Goldman bracket.
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The Goldman bracket and intersection numbers

Let G be a finitely generated, discrete group of Isom(IH)
and let L > 0. There exists py such that if p and q are
integers at least one of which is larger than py:
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The Goldman bracket and intersection numbers

Let G be a finitely generated, discrete group of Isom(IH)
and let L > 0. There exists py such that if p and q are
integers at least one of which is larger than py:
If x and y are hyperbolic transformations in G such that
neither is conjugate to a power of the other, with translation
length bounded above by L and such that pT(x) # q7(y)

then w equals the geometric intersection number of x
andy, erre M is the the Manhattan norm.
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The Goldman bracket and intersection numbers

Let G be a finitely generated, discrete group of Isom(IH)
and let L > 0. There exists py such that if p and q are
integers at least one of which is larger than py:
If x and y are hyperbolic transformations in G such that
neither is conjugate to a power of the other, with translation
length bounded above by L and such that pT(x) # q7(y)
then w equals the geometric intersection number of x
and y, erre M is the the Manhattan norm.
A similar statement holds for self-intersections.
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Statement of the Theorem
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String Topology

String topology combines the intersection product
(cup product) with the loop product to give a product
on loop spaces.
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String Topology

String topology combines the intersection product
(cup product) with the loop product to give a product
on loop spaces.

Namely, given classes x and y in the loop space of M,
we make them transversal and take the loop product
wherever they intersect.

This is compatible with the S!-action on the loop
space, which gives an operation A on the homology
of the loop space.
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String topology and Geometric Decomposition

By the Thurston-Perelman Geometrization Theorem,
every closed, oriented, irreducible 3-manifold M has a
natural decomposition into geometric pieces.
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String topology and Geometric Decomposition

By the Thurston-Perelman Geometrization Theorem,
every closed, oriented, irreducible 3-manifold M has a
natural decomposition into geometric pieces.

In joint work with Moira Chas, we show that this is
determined by the String topology on M together
with the power operations on the loop space.
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String topology and Geometric Decomposition

By the Thurston-Perelman Geometrization Theorem,
every closed, oriented, irreducible 3-manifold M has a
natural decomposition into geometric pieces.

In joint work with Moira Chas, we show that this is
determined by the String topology on M together
with the power operations on the loop space.
Essentially, we show that String topology determines
essential tori and their intersections with other tori
and curves.
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Geometric Decompositions of
3-dimensional Manifolds
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Prime decomposition

An oriented 3-manifold M is said to be prime if
whenever M = M;#M,, one of M; and M, is S3.
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Prime decomposition

An oriented 3-manifold M is said to be prime if
whenever M = M;#M,, one of M; and M, is S3.
Knesser-Milnor: Every closed, oriented 3-manifold
can be uniquely expressed as a connected sum

M = My#My# . .. #M, of prime 3-manifolds.

M is irreducible if every sphere S C M bounds a
3-ball.

An oriented prime 3-manifold is either irreducible or

S$2 x St
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Seifert fiber spaces

» A Seifert fiber space M is an S'-bundle over a
2-dimensional orbifold.
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Seifert fiber spaces

A Seifert fiber space M is an S'-bundle over a

2-dimensional orbifold.

Concretely, this means
M is decomposed as a disjoint union of copies of S*.
Locally this decomposition is a product except for finitely
many exceptional fibers.
At exceptional fibers, M (with its decompostion) is
locally isomorphic to the mapping torus of D? c C with

2miq
respect to the map z+ e » z, where p and g are

relatively prime integers.
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Seifert fiber spaces

A Seifert fiber space M is an S'-bundle over a

2-dimensional orbifold.

Concretely, this means
M is decomposed as a disjoint union of copies of S*.
Locally this decomposition is a product except for finitely
many exceptional fibers.
At exceptional fibers, M (with its decompostion) is
locally isomorphic to the mapping torus of D? c C with

2miq
respect to the map z+ e » z, where p and g are

relatively prime integers.
These give 6 of Thurston’s 8 geometries.
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Geometric Decomposition

Let M be an orientable, irreducible, closed 3-manifold.
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Geometric Decomposition

Let M be an orientable, irreducible, closed 3-manifold.

(JSJ-decomposition) There is a unique (up to
isotopy) minimal collection of disjoint tori in M such
that each component of M split along the tori is
either a Seifert fiber space or atoroidal.
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Geometric Decomposition

Let M be an orientable, irreducible, closed 3-manifold.

(JSJ-decomposition) There is a unique (up to
isotopy) minimal collection of disjoint tori in M such
that each component of M split along the tori is
either a Seifert fiber space or atoroidal.

The atoroidal components are hyperbolic except when
M is a solv manifold - the mapping torus of an
Anosov map of T2.
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Describing geometric decompositions

Recognize closed geometric manifolds: Hyperbolic,
Seifert fibered, Solv.
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Seifert fibered, Solv.
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a JSJ torus is in the boundary of a Seifert piece.

Siddhartha Gadgil String Top. and Geom. Decomp. 18 / 24



Describing geometric decompositions

Recognize closed geometric manifolds: Hyperbolic,
Seifert fibered, Solv.

Determine a maximal family of non-parallel embedded
tori not contained in Seifert pieces (JSJ tori).

Determine the Sefiert pieces.

Determine when two JSJ tori are adjacent, and when
a JSJ torus is in the boundary of a Seifert piece.

We have to refine the adjacency using homology.
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Geometric Decompositions from
String Topology
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Tori and String Topology

A torus T in M with a fixed fibration gives a natural
class in the homology of the loop space of M.
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A torus T in M with a fixed fibration gives a natural
class in the homology of the loop space of M.

Curves also give natural classes.
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Tori and String Topology

A torus T in M with a fixed fibration gives a natural
class in the homology of the loop space of M.

Curves also give natural classes.

We consider the String brackets of such classes, as
well as those obtained from these by the A operation.
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Tori and String Topology

A torus T in M with a fixed fibration gives a natural
class in the homology of the loop space of M.

Curves also give natural classes.

We consider the String brackets of such classes, as
well as those obtained from these by the A operation.

We shall say that two fibered tori (or a fibered torus
and a curve) cross if some string bracket of some
power of the associated classes does not vanish.
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Non-cancellation

Lemma: If an embedded torus T which is not in a
Seifert piece and is generically fibered intersects a
curve vy essentially, then it crosses 7y (using 72).
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For the first lemma we consider conjugacy in
amalgamated free products and HNN extensions.
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Non-cancellation

Lemma: If an embedded torus T which is not in a
Seifert piece and is generically fibered intersects a
curve vy essentially, then it crosses 7y (using 72).
Lemma: Two (generically fibered) tori in a Seifert
piece that intersect essentially usually cross.

For the first lemma we consider conjugacy in
amalgamated free products and HNN extensions.
For the second lemma, we reduce to the Goldman
bracket (our earlier theorem).
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JSJ Tori

We say T; < T, if whenever a curve ~y crosses T1, it
crosses 5.
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JSJ Tori

We say T; < T, if whenever a curve ~y crosses T1, it
crosses 5.

We also get a corresponding equivalence relation.

A torus T is isolated if no torus crosses T.

An isolated torus is strongly indecomposable if
whenever T < Ty + T, with T, T, isolated, we have
T <Tior T <T>.
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JSJ Tori

We say T; < T, if whenever a curve ~y crosses T1, it
crosses 5.

We also get a corresponding equivalence relation.

A torus T is isolated if no torus crosses T.

An isolated torus is strongly indecomposable if
whenever T < Ty + T, with T, T, isolated, we have
T <Tior T <T>.

JSJ tori correspond to maximal, isolated, strongly
indecomposable classes up to equivalence.
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Seifert pieces

» A torus class T is split if T = Ty + T, such that,
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T1 and T, are not isolated.
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Seifert pieces

A torus class T is split if T = Ty + T, such that,

T1 and T, are not isolated.
if T' crosses T, we can write T' = T{ + T} so that T/
does not cross T; if i # j.
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Seifert pieces

A torus class T is split if T = Ty + T, such that,

T1 and T, are not isolated.
if T' crosses T, we can write T' = T{ + T} so that T/
does not cross T; if i # j.

We form the graph with vertices non-split torus
classes and edges for pairs of classes that cross.
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Seifert pieces

A torus class T is split if T = Ty + T, such that,
T1 and T, are not isolated.

if T' crosses T, we can write T' = T{ + T} so that T/
does not cross T; if i # j.

We form the graph with vertices non-split torus
classes and edges for pairs of classes that cross.

The infinite connected components correspond to
Seifert pieces.
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JSJ in the generic case

We define two JSJ tori T; and T, to be adjacent if
there is a curve v that crosses both 7; and T, such
that no power of v crosses any other JSJ torus.
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We define two JSJ tori T; and T, to be adjacent if
there is a curve v that crosses both 7; and T, such
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We can similarly define adjacency between a JSJ
torus and a Seifert piece.
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JSJ in the generic case

We define two JSJ tori T; and T, to be adjacent if
there is a curve v that crosses both 7; and T, such
that no power of v crosses any other JSJ torus.

We can similarly define adjacency between a JSJ
torus and a Seifert piece.

The complementary components correspond roughly
to cliques in the adjacency graph of JSJ tori.

We also need the cup product as JSJ tori T; and 75
may be in the boundaries of two components.
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Description of components

We can define doubly adjacent and loops using the
cup product and string brackets.
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We can define doubly adjacent and loops using the
cup product and string brackets.

If all tori are doubly adjacent, then we have exactly
two components, bounding all of them.
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Description of components

We can define doubly adjacent and loops using the
cup product and string brackets.
If all tori are doubly adjacent, then we have exactly

two components, bounding all of them.
Otherwise, components correspond bijectively to
collections of JSJ tori such that
Any two tori in a collection are adjacent.
If A and B are doubly adjacent and A is in the collection,
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Description of components

We can define doubly adjacent and loops using the
cup product and string brackets.
If all tori are doubly adjacent, then we have exactly

two components, bounding all of them.
Otherwise, components correspond bijectively to
collections of JSJ tori such that
Any two tori in a collection are adjacent.
If A and B are doubly adjacent and A is in the collection,
then so is B.
If A, B and C are in the collection and there is a loop
ABC then there is a singleton loop, say A.
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Some degenerate cases

We can recognize a closed Seifert fibered space M
using classes in Hs of the loop space of M with
non-vanishing String bracket, following Abbaspour.
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Some degenerate cases

We can recognize a closed Seifert fibered space M
using classes in Hs of the loop space of M with
non-vanishing String bracket, following Abbaspour.
Tori bounding twisted |-bundles over the Klein bottle
have squares that cross no curve.
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Some degenerate cases

We can recognize a closed Seifert fibered space M
using classes in Hs of the loop space of M with
non-vanishing String bracket, following Abbaspour.

Tori bounding twisted |-bundles over the Klein bottle
have squares that cross no curve.

A solv manifold has a single class T of tori, and T
does not cross any homologically trivial curve.
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