Recent breakthroughs in sphere packing

Abhinav Kumar

Stony Brook, ICTS

November 8, 2019
Definition

A sphere packing in \mathbb{R}^n is a collection of spheres/balls of equal size which do not overlap (except for touching). The density of a sphere packing is the volume fraction of space occupied by the balls.
Sphere packing problem

Problem: Find a/the densest sphere packing(s) in \mathbb{R}^n.
Sphere packing problem

Problem: Find a/the densest sphere packing(s) in \mathbb{R}^n.

In dimension 1, we can achieve density 1 by laying intervals end to end.
Problem: Find a/the densest sphere packing(s) in \mathbb{R}^n.

In dimension 1, we can achieve density 1 by laying intervals end to end.

In dimension 2, the best possible is by using the hexagonal lattice. [Fejes Tóth 1940]
In dimension 3, the best possible way is to stack layers of the solution in 2 dimensions. This is Kepler’s conjecture, now a theorem of Hales.

There are infinitely (in fact, uncountably) many ways of doing this! These are the Barlow packings.
Face centered cubic packing

Image: Greg A L (Wikipedia), CC BY-SA 3.0 license
Higher dimensions

In some higher dimensions, we have guesses for the densest sphere packings.

Most of them arise from lattices.
Higher dimensions

In some higher dimensions, we have guesses for the densest sphere packings.

Most of them arise from lattices.

But (until very recently!) no proofs.
In some higher dimensions, we have guesses for the densest sphere packings. Most of them arise from lattices. But (until very recently!) no proofs. In very high dimensions (say ≥ 1000) densest packings are likely to be close to disordered.
A lattice Λ in \mathbb{R}^n is a discrete subgroup of rank n, i.e. generated by n linearly independent vectors of \mathbb{R}^n.

Examples:

- Integer lattice \mathbb{Z}^n.
- Checkerboard lattice $D_n = \{x \in \mathbb{Z}^n : \sum x_i \text{ even}\}$.
- Simplex lattice $A_n = \{x \in \mathbb{Z}^n + 1 : \sum x_i = 0\}$.
- Special root lattices E_6, E_7, E_8.
Lattices

Definition

A lattice \(\Lambda \) in \(\mathbb{R}^n \) is a discrete subgroup of rank \(n \), i.e. generated by \(n \) linearly independent vectors of \(\mathbb{R}^n \).

Examples:

- Integer lattice \(\mathbb{Z}^n \).
- Checkerboard lattice \(D_n = \{ x \in \mathbb{Z}^n : \sum x_i \text{ even} \} \).
- Simplex lattice \(A_n = \{ x \in \mathbb{Z}^n + 1 : \sum x_i = 0 \} \).
- Special root lattices \(E_6, E_7, E_8 \).
 - \(E_8 \) generated by \(D_8 \) and all-halves vector.
 - \(E_7 \) orthogonal complement of a root (or \(A_1 \)) in \(E_8 \).
 - \(E_6 \) orthogonal complement of an \(A_2 \) in \(E_8 \).
Lattices

Definition

A lattice Λ in \mathbb{R}^n is a discrete subgroup of rank n, i.e. generated by n linearly independent vectors of \mathbb{R}^n.

Examples:

- Integer lattice \mathbb{Z}^n.
- Checkerboard lattice $D_n = \{ x \in \mathbb{Z}^n : \sum x_i \text{ even} \}$
A lattice Λ in \mathbb{R}^n is a discrete subgroup of rank n, i.e. generated by n linearly independent vectors of \mathbb{R}^n.

Examples:

- Integer lattice \mathbb{Z}^n.
- Checkerboard lattice $D_n = \{ x \in \mathbb{Z}^n : \sum x_i \text{ even} \}$
- Simplex lattice $A_n = \{ x \in \mathbb{Z}^{n+1} : \sum x_i = 0 \}$
A lattice Λ in \mathbb{R}^n is a discrete subgroup of rank n, i.e. generated by n linearly independent vectors of \mathbb{R}^n.

Examples:

- Integer lattice \mathbb{Z}^n.
- Checkerboard lattice $D_n = \{ x \in \mathbb{Z}^n : \sum x_i \text{ even} \}$
- Simplex lattice $A_n = \{ x \in \mathbb{Z}^{n+1} : \sum x_i = 0 \}$
- Special root lattices E_6, E_7, E_8.

E_8 is generated by D_8 and all-halves vector.

E_7 is orthogonal complement of a root (or A_1) in E_8.

E_6 is orthogonal complement of an A_2 in E_8.

Abhinav Kumar (Stony Brook, ICTS) Recent breakthroughs in sphere packing November 8, 2019 7 / 47
A lattice Λ in \mathbb{R}^n is a discrete subgroup of rank n, i.e. generated by n linearly independent vectors of \mathbb{R}^n.

Examples:

- Integer lattice \mathbb{Z}^n.
- Checkerboard lattice $D_n = \{ x \in \mathbb{Z}^n : \sum x_i \text{ even} \}$
- Simplex lattice $A_n = \{ x \in \mathbb{Z}^{n+1} : \sum x_i = 0 \}$
- Special root lattices E_6, E_7, E_8.
 - E_8 generated by D_8 and all-halves vector.
A lattice Λ in \mathbb{R}^n is a discrete subgroup of rank n, i.e. generated by n linearly independent vectors of \mathbb{R}^n.

Examples:

- Integer lattice \mathbb{Z}^n.
- Checkerboard lattice $D_n = \{ x \in \mathbb{Z}^n : \sum x_i \text{ even} \}$
- Simplex lattice $A_n = \{ x \in \mathbb{Z}^{n+1} : \sum x_i = 0 \}$
- Special root lattices E_6, E_7, E_8.
 - E_8 generated by D_8 and all-halves vector.
 - E_7 orthogonal complement of a root (or A_1) in E_8.

Abhinav Kumar (Stony Brook, ICTS) Recent breakthroughs in sphere packing November 8, 2019 7 / 47
Lattices

Definition

A lattice Λ in \mathbb{R}^n is a discrete subgroup of rank n, i.e. generated by n linearly independent vectors of \mathbb{R}^n.

Examples:

- Integer lattice \mathbb{Z}^n.
- Checkerboard lattice $D_n = \{x \in \mathbb{Z}^n : \sum x_i \text{ even} \}$
- Simplex lattice $A_n = \{x \in \mathbb{Z}^{n+1} : \sum x_i = 0\}$
- Special root lattices E_6, E_7, E_8.
 - E_8 generated by D_8 and all-halves vector.
 - E_7 orthogonal complement of a root (or A_1) in E_8.
 - E_6 orthogonal complement of an A_2 in E_8.
Projection of E8 root system

Image: Jgmoxness (Wikipedia), CC BY-SA 3.0 license
In dimension 24, there is also the remarkable Leech lattice. It is the unique even unimodular lattice in that dimension without any roots.
In dimension 24, there is also the remarkable Leech lattice. It is the unique even unimodular lattice in that dimension without any roots.

There are many neat constructions of it (for instance, Conway-Sloane give twenty-three constructions). The usual one involves the extended Golay code.

My favorite: The lattice $\mathbb{I}_{25,1}$ is generated in $\mathbb{R}_{25,1}$ (which has the quadratic form $x_1^2 + \cdots + x_{25}^2 - x_{26}^2$) by vectors in \mathbb{Z}_{26} or $(\mathbb{Z} + 1/2)_{26}$ with even coordinate sum.

The Weyl vector $w = (0, 1, 2, \ldots, 24, 70)$ has norm 0, since $1^2 + \cdots + 24^2 = 70^2$ (!)
Leech lattice

In dimension 24, there is also the remarkable Leech lattice. It is the unique even unimodular lattice in that dimension without any roots.

There are many neat constructions of it (for instance, Conway-Sloane give twenty-three constructions). The usual one involves the extended Golay code.

My favorite: The lattice \(\mathbb{II}_{25,1} \) is generated in \(\mathbb{R}^{25,1} \) (which has the quadratic form \(x_1^2 + \cdots + x_{25}^2 - x_{26}^2 \)) by vectors in \(\mathbb{Z}^{26} \) or \((\mathbb{Z} + 1/2)^{26} \) with even coordinate sum.
Leech lattice

In dimension 24, there is also the remarkable Leech lattice. It is the unique even unimodular lattice in that dimension without any roots.

There are many neat constructions of it (for instance, Conway-Sloane give twenty-three constructions). The usual one involves the extended Golay code.

My favorite: The lattice $\mathbb{II}^{25,1}$ is generated in $\mathbb{R}^{25,1}$ (which has the quadratic form $x_1^2 + \cdots + x_{25}^2 - x_{26}^2$) by vectors in \mathbb{Z}^{26} or $(\mathbb{Z} + 1/2)^{26}$ with even coordinate sum.

The Weyl vector $w = (0, 1, 2, \ldots, 24, 70)$ has norm 0, since $1^2 + \cdots + 24^2 = 70^2$ (!)
Leech lattice

In dimension 24, there is also the remarkable Leech lattice. It is the unique even unimodular lattice in that dimension without any roots.

There are many neat constructions of it (for instance, Conway-Sloane give twenty-three constructions). The usual one involves the extended Golay code.

My favorite: The lattice $\mathbb{II}_{25,1}$ is generated in $\mathbb{R}^{25,1}$ (which has the quadratic form $x_1^2 + \cdots + x_{25}^2 - x_{26}^2$) by vectors in \mathbb{Z}^{26} or $(\mathbb{Z} + 1/2)^{26}$ with even coordinate sum.

The Weyl vector $w = (0, 1, 2, \ldots, 24, 70)$ has norm 0, since $1^2 + \cdots + 24^2 = 70^2$ (!)

The Leech lattice is $w^\perp/\mathbb{Z}w$ with the induced quadratic form.
Associated sphere packing: if $m(\Lambda)$ is the length of a smallest non-zero vector of Λ, then we can put balls of radius $m(\Lambda)/2$ around each point of Λ so that they don’t overlap.
Lattice packing

Associated sphere packing: if $m(\Lambda)$ is the length of a smallest non-zero vector of Λ, then we can put balls of radius $m(\Lambda)/2$ around each point of Λ so that they don’t overlap.

The packing problem for lattices asks for the densest lattice(s) in \mathbb{R}^n for every n. This is equivalent to the determination of the Hermite constant γ_n, which arises in the geometry of numbers. The known answers are:

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Λ</td>
<td>A_1</td>
<td>A_2</td>
<td>A_3</td>
<td>D_4</td>
<td>D_5</td>
<td>E_6</td>
<td>E_7</td>
<td>E_8</td>
<td>Leech</td>
</tr>
<tr>
<td>due to</td>
<td>Lagrange</td>
<td>Gauss</td>
<td>Korkine-Zolotareff</td>
<td>Blichfeldt</td>
<td>Cohn-Kumar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The new results

Theorem (Viazovska)

*The E_8 lattice packing is the densest sphere packing in \mathbb{R}^8.***
The new results

Theorem (Viazovska)

The E_8 lattice packing is the densest sphere packing in \mathbb{R}^8.

The proof is fairly direct, using just two main ingredients:

1. Linear programming bounds for packing
2. The theory of modular forms
The new results

Theorem (Viazovska)

The E_8 lattice packing is the densest sphere packing in \mathbb{R}^8.

Theorem (Cohn-Kumar-Miller-Radchenko-Viazovska)

The Leech lattice packing is the densest sphere packing in \mathbb{R}^{24}.
The new results

Theorem (Viazovska)

*The E_8 lattice packing is the densest sphere packing in \mathbb{R}^8.***

Theorem (Cohn-Kumar-Miller-Radchenko-Viazovska)

*The Leech lattice packing is the densest sphere packing in \mathbb{R}^{24}.***
The new results

Theorem (Viazovska)

*The E_8 lattice packing is the densest sphere packing in \mathbb{R}^8.***

Theorem (Cohn-Kumar-Miller-Radchenko-Viazovska)

*The Leech lattice packing is the densest sphere packing in \mathbb{R}^{24}.***

The proof is fairly direct, using just two main ingredients:

1. linear programming bounds for packing
The new results

Theorem (Viazovska)

*The E$_8$ lattice packing is the densest sphere packing in \mathbb{R}^8.***

Theorem (Cohn-Kumar-Miller-Radchenko-Viazovska)

*The Leech lattice packing is the densest sphere packing in \mathbb{R}^{24}.***

The proof is fairly direct, using just two main ingredients:

1. linear programming bounds for packing
2. the theory of modular forms
Linear programming bounds

Let the Fourier transform of a function f be defined by

$$\hat{f}(t) = \int_{\mathbb{R}^n} f(x) e^{2\pi i \langle x, t \rangle} \, dx.$$
Linear programming bounds

Let the Fourier transform of a function f be defined by

$$\hat{f}(t) = \int_{\mathbb{R}^n} f(x) e^{2\pi i \langle x, t \rangle} dx.$$

Theorem (Cohn-Elkies)

Suppose $f : \mathbb{R}^n \to \mathbb{R}$ is a Schwartz function with the properties

1. $f(0) = \hat{f}(0) = 1$
2. $f(x) \leq 0$ for $|x| \geq r$ (for some number $r > 0$).
3. $\hat{f}(t) \geq 0$ for all t.

Then the density of any sphere packing in \mathbb{R}^n is bounded above by

$$\text{vol}(B_n)(r/2)^n.$$
Linear programming bounds

Let the Fourier transform of a function f be defined by

$$\hat{f}(t) = \int_{\mathbb{R}^n} f(x) e^{2\pi i \langle x, t \rangle} dx.$$

Theorem (Cohn-Elkies)

Suppose $f : \mathbb{R}^n \to \mathbb{R}$ is a Schwartz function with the properties

1. $f(0) = \hat{f}(0) = 1$.

2. $f(x) \leq 0$ for $|x| \geq r$ (for some number $r > 0$).

3. $\hat{f}(t) \geq 0$ for all t.

Then the density of any sphere packing in \mathbb{R}^n is bounded above by $\text{vol}(B_n)(r/2)^n$.
Linear programming bounds

Let the Fourier transform of a function \(f \) be defined by

\[
\hat{f}(t) = \int_{\mathbb{R}^n} f(x) e^{2\pi i \langle x, t \rangle} \, dx.
\]

Theorem (Cohn-Elkies)

Suppose \(f : \mathbb{R}^n \to \mathbb{R} \) is a Schwartz function with the properties

1. \(f(0) = \hat{f}(0) = 1. \)
2. \(f(x) \leq 0 \) for \(|x| \geq r \) (for some number \(r > 0 \)).
Linear programming bounds

Let the Fourier transform of a function \(f \) be defined by

\[
\hat{f}(t) = \int_{\mathbb{R}^n} f(x) e^{2\pi i \langle x, t \rangle} \, dx.
\]

Theorem (Cohn-Elkies)

Suppose \(f : \mathbb{R}^n \to \mathbb{R} \) is a Schwartz function with the properties

1. \(f(0) = \hat{f}(0) = 1. \)
2. \(f(x) \leq 0 \) for \(|x| \geq r \) (for some number \(r > 0 \)).
3. \(\hat{f}(t) \geq 0 \) for all \(t \).
Linear programming bounds

Let the Fourier transform of a function f be defined by

$$\hat{f}(t) = \int_{\mathbb{R}^n} f(x) e^{2\pi i \langle x, t \rangle} dx.$$

Theorem (Cohn-Elkies)

Suppose $f : \mathbb{R}^n \to \mathbb{R}$ is a Schwartz function with the properties

1. $f(0) = \hat{f}(0) = 1$.
2. $f(x) \leq 0$ for $|x| \geq r$ (for some number $r > 0$).
3. $\hat{f}(t) \geq 0$ for all t.

Then the density of any sphere packing in \mathbb{R}^n is bounded above by $\text{vol}(B_n)(r/2)^n$.

Abhinav Kumar (Stony Brook, ICTS)
Recent breakthroughs in sphere packing
November 8, 2019 12 / 47
Linear programming bounds

Let the Fourier transform of a function f be defined by

$$\hat{f}(t) = \int_{\mathbb{R}^n} f(x) e^{2\pi i \langle x, t \rangle} dx.$$

Theorem (Cohn-Elkies)

Suppose $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is a Schwartz function with the properties

1. $f(0) = \hat{f}(0) = 1.$
2. $f(x) \leq 0$ for $|x| \geq r$ (for some number $r > 0$).
3. $\hat{f}(t) \geq 0$ for all t.

Then the density of any sphere packing in \mathbb{R}^n is bounded above by

$$\text{vol}(B_n)(r/2)^n.$$
Why is it a linear programming bound?
LP bounds

Why is it a linear programming bound?

We can rephrase the theorem (by scaling f appropriately) to say: if

1. $\hat{f}(0) = 1$

$\hat{f}(t) \geq 0$ for all t
LP bounds

Why is it a linear programming bound?

We can rephrase the theorem (by scaling f appropriately) to say: if

1. $\hat{f}(0) = 1$
2. $f(x) \leq 0$ for $|x| \geq 1$

Note that the constraints and objective function given are linear in f. Therefore this is a linear (convex) program.
Why is it a linear programming bound?

We can rephrase the theorem (by scaling f appropriately) to say: if

1. $\hat{f}(0) = 1$
2. $f(x) \leq 0$ for $|x| \geq 1$
3. $\hat{f}(t) \geq 0$ for all t
LP bounds

Why is it a linear programming bound?

We can rephrase the theorem (by scaling f appropriately) to say: if

1. $\hat{f}(0) = 1$
2. $f(x) \leq 0$ for $|x| \geq 1$
3. $\hat{f}(t) \geq 0$ for all t
Why is it a linear programming bound?

We can rephrase the theorem (by scaling f appropriately) to say: if

1. $\hat{f}(0) = 1$
2. $f(x) \leq 0$ for $|x| \geq 1$
3. $\hat{f}(t) \geq 0$ for all t

then the density is bounded by $2^{-n} \text{vol}(B_n)f(0)$.
Why is it a linear programming bound?

We can rephrase the theorem (by scaling \(f \) appropriately) to say: if

1. \(\hat{f}(0) = 1 \)
2. \(f(x) \leq 0 \) for \(|x| \geq 1 \)
3. \(\hat{f}(t) \geq 0 \) for all \(t \)

then the density is bounded by \(2^{-n} \text{vol}(B_{n})f(0) \).

Note that the constraints and objective function given are linear in \(f \). Therefore this is a linear (convex) program.
Proof

Let’s see the proof for lattices:

Let Λ be any lattice, which we have scaled so its minimal nonzero vector length is 1. Then the Poisson summation formula tells us

$$\sum_{x \in \Lambda} f(x) = 1 \text{ covol}(\Lambda) \sum_{t \in \Lambda^*} \hat{f}(t)$$

Now the LHS is $\leq f(0)$ while the sum in the RHS is $\geq \hat{f}(0) \geq 1$, yielding

$$1 \text{ covol}(\Lambda) \leq f(0)$$

multiplying by the volume of a ball of radius $1/2$ tells us that the density is at most $2^{-n} \text{ vol}(B^n)f(0)$.
Proof

Let’s see the proof for lattices:

Let Λ be any lattice, which we have scaled so its minimal nonzero vector length is 1. Then the Poisson summation formula tells us

$$\sum_{x \in \Lambda} f(x) = \frac{1}{\text{covol}(\Lambda)} \sum_{t \in \Lambda^*} \hat{f}(t)$$
Proof

Let’s see the proof for lattices:

Let Λ be any lattice, which we have scaled so its minimal nonzero vector length is 1. Then the Poisson summation formula tells us

$$
\sum_{x \in \Lambda} f(x) = \frac{1}{\text{covol}(\Lambda)} \sum_{t \in \Lambda^*} \hat{f}(t)
$$

Now the LHS is $\leq f(0)$ while the sum in the RHS is $\geq \hat{f}(0) \geq 1$, yielding

$$
\frac{1}{\text{covol}(\Lambda)} \leq f(0)
$$

multiplying by the volume of a ball of radius $1/2$ tells us that the density is at most $2^{-n} \text{vol}(B_n)f(0)$.

Remarks on the LP bound

- We can assume f is radial without loss of generality.

$$f(x) = \sum_{i=0}^{N} c_i L_i(2\pi|x|^2) \exp(-\pi|x|^2)$$

where c_i are the coefficients of the linear program, L_i are the Laguerre polynomials (so L_i times Gaussian is an eigenfunction for the Fourier transform).

In dimensions 8 and 24 one can get upper bounds which are numerically very close to the lower bound coming from E_8 or Leech density.
Remarks on the LP bound

- We can assume f is radial without loss of generality.
- For numerical experimentation we can take

$$f(x) = \sum_{i=0}^{N} c_i L_i(2\pi |x|^2) \exp(-\pi |x|^2)$$

where c_i are the coefficients of the linear program, L_i are the Laguerre polynomials (so L_i times Gaussian is an eigenfunction for the Fourier transform).
Remarks on the LP bound

- We can assume f is radial without loss of generality.
- For numerical experimentation we can take

$$f(x) = \sum_{i=0}^{N} c_i L_i(2\pi|x|^2) \exp(-\pi|x|^2)$$

where c_i are the coefficients of the linear program, L_i are the Laguerre polynomials (so L_i times Gaussian is an eigenfunction for the Fourier transform).

- In dimensions 8 and 24 one can get upper bounds which are numerically very close to the lower bound coming from E_8 or Leech density.
Here is a plot of $\log(\text{density})$ vs. dimension.

Look at slopes (asymptotically) as well as where these curves meet.
Desired functions

Let Λ be E_8 or the Leech lattice, and r_0, r_1, \ldots its nonzero vector lengths (square roots of the even natural numbers, except Leech skips 2). To have a tight upper bound that matches Λ, we need the function f to look like this:
Desired functions

While \(\hat{f} \) must look like this:
In [Cohn-Kumar 2009] we used a polynomial of degree 803 and 3000 digits of precision to find f and \hat{f} which looked like this with 200 forced double roots, and r very close to 2.
In [Cohn-Kumar 2009] we used a polynomial of degree 803 and 3000 digits of precision to find \(f \) and \(\hat{f} \) which looked like this with 200 forced double roots, and \(r \) very close to 2.

Obtained an upper bound of Leech lattice density times \(1 + 10^{-30} \). Similar bounds for \(E_8 \). Enough to show \(\Lambda_{24} \) is the densest lattice.
In [Cohn-Kumar 2009] we used a polynomial of degree 803 and 3000 digits of precision to find f and \hat{f} which looked like this with 200 forced double roots, and r very close to 2.

Obtained an upper bound of Leech lattice density times $1 + 10^{-30}$. Similar bounds for E_8. Enough to show Λ_{24} is the densest lattice. Further numerical experimentation by Cohn and Miller.
In [Cohn-Kumar 2009] we used a polynomial of degree 803 and 3000 digits of precision to find f and \hat{f} which looked like this with 200 forced double roots, and r very close to 2.

Obtained an upper bound of Leech lattice density times $1 + 10^{-30}$. Similar bounds for E_8. Enough to show Λ_{24} is the densest lattice. Further numerical experimentation by Cohn and Miller.

But how do we write down exact functions??
In [Cohn-Kumar 2009] we used a polynomial of degree 803 and 3000 digits of precision to find \(f \) and \(\hat{f} \) which looked like this with 200 forced double roots, and \(r \) very close to 2.

Obtained an upper bound of Leech lattice density times \(1 + 10^{-30} \). Similar bounds for \(E_8 \). Enough to show \(\Lambda_{24} \) is the densest lattice. Further numerical experimentation by Cohn and Miller.

But how do we write down exact functions??

We were stuck for more than a decade.
In March 2016 Viazovska posted a preprint to the arxiv, solving the sphere packing problem in 8 dimensions.

She found the magic function \(f \)!
In March 2016 Viazovska posted a preprint to the arxiv, solving the sphere packing problem in 8 dimensions.

She found the magic function f!

Her proof used modular forms.
Modular group

A modular form is a function $\phi : \mathcal{H} \to \mathbb{C}$ with a lot of symmetries.
Modular group

A modular form is a function $\phi : \mathcal{H} \to \mathbb{C}$ with a lot of symmetries. Specifically, let $\text{SL}_2(\mathbb{Z})$ denote all the integer two by two matrices of determinant 1.

It acts on the upper half plane by fractional linear transformations:

$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = \frac{az + b}{cz + d}$
A modular form is a function \(\phi : \mathcal{H} \to \mathbb{C} \) with a lot of symmetries.

Specifically, let \(\text{SL}_2(\mathbb{Z}) \) denote all the integer two by two matrices of determinant 1.

It acts on the upper half plane by fractional linear transformations:

\[
\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = \frac{az + b}{cz + d}
\]

In fact the action factors through \(\text{PSL}_2(\mathbb{Z}) = \text{SL}_2(\mathbb{Z})/\{\pm 1\} \), and this quotient group is generated by the images of

\[
S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \quad \text{and} \quad T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.
\]
Fundamental domain

The picture shows Dedekind’s famous tessellation of the upper half plane. The union of a black and a white region makes a fundamental domain for the action of $SL_2(\mathbb{Z})$.

Image from the blog neverendingbooks.org, originally from John Stillwell’s article “Modular miracles” in Amer. Math. Monthly.
The quotient $SL_2(\mathbb{Z})\backslash \mathcal{H}$ can be identified with the Riemann sphere $\mathbb{C}P^1$ minus a point. Compactifying the quotient by adding this cusp gives an algebraic curve (namely $\mathbb{C}P^1$).

The preimages of this point are ∞ and the rational numbers, i.e. $\mathbb{P}^1(\mathbb{Q})$.

Abhinav Kumar (Stony Brook, ICTS) Recent breakthroughs in sphere packing November 8, 2019 23 / 47
The quotient $\text{SL}_2(\mathbb{Z})\backslash \mathcal{H}$ can be identified with the Riemann sphere \mathbb{CP}^1 minus a point. Compactifying the quotient by adding this cusp gives an algebraic curve (namely \mathbb{CP}^1).

The preimages of this point are ∞ and the rational numbers, i.e. $\mathbb{P}^1(\mathbb{Q})$.

The principal congruence subgroup of level N is the subgroup $\Gamma(N)$ of all the elements of $\text{SL}_2(\mathbb{Z})$ congruent to the identity modulo N. We say Γ is a congruence subgroup if it contains some $\Gamma(N)$. Again the quotient is a complex algebraic curve; we can compactify it by adding finitely many cusps, which correspond to the elements of $\Gamma \backslash \mathbb{P}^1(\mathbb{Q})$.
Modular forms

The first condition for a holomorphic function $f : \mathcal{H} \to \mathbb{C}$ to be a modular form for Γ of weight k is

$$f \left(\frac{az + b}{cz + d} \right) = (cz + d)^k f(z)$$

for all matrices

$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma.$$
Modular forms

The first condition for a holomorphic function $f : \mathcal{H} \rightarrow \mathbb{C}$ to be a modular form for Γ of weight k is

$$f \left(\frac{az + b}{cz + d} \right) = (cz + d)^k f(z)$$

for all matrices

$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma.$$

Now, for some N the matrix

$$\begin{pmatrix} 1 & N \\ 0 & 1 \end{pmatrix}$$

lies in the congruence subgroup, so we must have $f(z + N) = f(z)$.
Growth condition

So if \(q = \exp(2\pi iz) \) then we can write \(f \) as a function of \(q^{1/N} \).

The second condition for a modular form says that near \(\infty \), there is a power series expansion

\[
f = \sum_{n \geq 0} a_n q^{n/N}.
\]
So if \(q = \exp(2\pi i z) \) then we can write \(f \) as a function of \(q^{1/N} \).

The second condition for a modular form says that near \(\infty \), there is a power series expansion

\[
 f = \sum_{n \geq 0} a_n q^{n/N}.
\]

Similarly for all the (finitely many) cusps. Defining the slash operator for \(g \in \text{SL}_2(\mathbb{Z}) \) as above by

\[
 (f|_k g)(z) = (cz + d)^{-k} f(gz),
\]

all these \(f|_k g \) must have holomorphic power series expansion at \(\infty \).
Growth condition

So if \(q = \exp(2\pi i z) \) then we can write \(f \) as a function of \(q^{1/N} \).

The second condition for a modular form says that near \(\infty \), there is a power series expansion

\[
f = \sum_{n \geq 0} a_n q^{n/N}.
\]

Similarly for all the (finitely many) cusps. Defining the slash operator for \(g \in \text{SL}_2(\mathbb{Z}) \) as above by

\[
(f|_k g)(z) = (cz + d)^{-k} f(gz),
\]

all these \(f|_k g \) must have holomorphic power series expansion at \(\infty \).

If it’s only a Laurent series, i.e., there are (finitely many) negative powers of \(q \), we say that \(f \) is a weakly holomorphic modular form.
Examples

How do we find actual examples of modular forms?
Examples

How do we find actual examples of modular forms?

The first way is to take simple examples of a “well-behaved” holomorphic function and symmetrize (recalling that $SL_2(\mathbb{Z})$ acts on \mathbb{Z}^2):

$$G_k(z) = \sum_{(a,b) \in \mathbb{Z}^2 \setminus (0,0)} \frac{1}{(az + b)^k}.$$
How do we find actual examples of modular forms?

The first way is to take simple examples of a “well-behaved” holomorphic function and symmetrize (recalling that $SL_2(\mathbb{Z})$ acts on \mathbb{Z}^2):

$$G_k(z) = \sum_{(a,b) \in \mathbb{Z}^2 \setminus (0,0)} \frac{1}{(az+b)^k}.$$

For even $k \geq 4$, the sum converges absolutely and we get a non-zero modular form of weight k. These are called Eisenstein series.
Eisenstein series

The normalized versions are

\[E_4 = 1 + 240 \sum \sigma_3(n)q^n \]
\[E_6 = 1 - 504 \sum \sigma_5(n)q^n \]

Here \(\sigma_k(n) = \sum_{d \mid n, d > 0} d^k \).
Eisenstein series

The normalized versions are

\[E_4 = 1 + 240 \sum \sigma_3(n)q^n \]
\[E_6 = 1 - 504 \sum \sigma_5(n)q^n \]

Here \(\sigma_k(n) = \sum_{d|n, d>0} d^k \).

These two in fact generate the algebra of modular forms for the full modular group \(\text{SL}_2(\mathbb{Z}) \).
Eisenstein series

The normalized versions are

\[E_4 = 1 + 240 \sum \sigma_3(n)q^n \]
\[E_6 = 1 - 504 \sum \sigma_5(n)q^n \]

Here \(\sigma_k(n) = \sum_{d|n, d>0} d^k \).

These two in fact generate the algebra of modular forms for the full modular group \(\text{SL}_2(\mathbb{Z}) \).

Another beautiful example is the modular discriminant of weight 12

\[\Delta = (E_4^3 - E_6^2)/1728 = q \prod_{n=1}^{\infty} (1 - q^n)^{24} \]
Another source of modular forms is theta functions of lattices:

If Λ is an integral lattice (i.e. all inner products between vectors in the lattice are integers) of dimension d then

$$\Theta_\Lambda(q) = \sum_{v \in \Lambda} q^{\langle v, v \rangle/2} = \sum_{n \geq 0} N_n(\Lambda) q^{n/2}$$

is a modular form of weight $d/2$ for some congruence subgroup (related to $\text{covol}(\Lambda)$).
Another source of modular forms is theta functions of lattices:

If Λ is an integral lattice (i.e. all inner products between vectors in the lattice are integers) of dimension d then

$$\Theta_\Lambda(q) = \sum_{v \in \Lambda} q^{\langle v, v \rangle/2} = \sum_{n \geq 0} N_n(\Lambda) q^{n/2}$$

is a modular form of weight $d/2$ for some congruence subgroup (related to $\text{covol}(\Lambda)$).

Example

The theta function of E_8 is the Eisenstein series E_4!
Theta functions II

There are also classical theta functions studied by Jacobi, of which we will need:

\[\Theta_{00}(z) := \sum_{n \in \mathbb{Z}} \exp(\pi in^2 z) \]

(the theta function of \(\mathbb{Z} \))
There are also classical theta functions studied by Jacobi, of which we will need:

\[\Theta_{00}(z) := \sum_{n \in \mathbb{Z}} \exp(\pi i n^2 z) \]

(the theta function of \(\mathbb{Z} \))

\[\Theta_{01}(z) := \sum_{n \in \mathbb{Z}} (-1)^n \exp(\pi i n^2 z) \]

\[\Theta_{10}(z) := \sum_{n \in \mathbb{Z}} \exp(\pi i (n + 1/2)^2 z) \]

Let \(U = \Theta_{00}^4, \ V = \Theta_{10}^4, \ W = \Theta_{01}^4 \). These are modular forms of weight 2 for the congruence subgroup \(\Gamma(2) \).
There are also classical theta functions studied by Jacobi, of which we will need:

\[\Theta_{00}(z) := \sum_{n \in \mathbb{Z}} \exp(\pi i n^2 z) \]

(the theta function of \(\mathbb{Z} \))

\[\Theta_{01}(z) := \sum_{n \in \mathbb{Z}} (-1)^n \exp(\pi i n^2 z) \]

\[\Theta_{10}(z) := \sum_{n \in \mathbb{Z}} \exp(\pi i (n + 1/2)^2 z) \]

Let \(U = \Theta_{00}^4, \ V = \Theta_{10}^4, \ W = \Theta_{01}^4 \). These are modular forms of weight 2 for the congruence subgroup \(\Gamma(2) \). They are related by \(U = V + W \).
L-functions

Usually, from a modular form we make an L-function by taking a Mellin transform:

$$L(f, s) = \frac{(2\pi)^s}{\Gamma(s)} \int_0^\infty f(it)t^s \frac{dt}{t}$$

which works for $\Re(s)$ large enough.
L-functions

Usually, from a modular form we make an L-function by taking a Mellin transform:

$$L(f, s) = \frac{(2\pi)^s}{\Gamma(s)} \int_0^\infty f(it)t^s \frac{dt}{t}$$

which works for $\Re(s)$ large enough.

These L-functions are a cornerstone of much of modern number theory.
L-functions

Usually, from a modular form we make an L-function by taking a Mellin transform:

$$L(f, s) = \frac{(2\pi)^s}{\Gamma(s)} \int_0^\infty f(it)t^s \frac{dt}{t}$$

which works for $\Re(s)$ large enough.

These L-functions are a cornerstone of much of modern number theory.

For instance, Wiles’s proof of FLT relies on showing the L-function of a specific kind of elliptic curve is the same as that of a modular form.
Quasimodular forms

If we apply the Eisenstein series construction to $k = 2$, we run into problems because of non-absolute convergence.

$$G_2(z) = \sum_{n \neq 0} \frac{1}{n^2} + \sum_{m \neq 0} \sum_{n \in \mathbb{Z}} \frac{1}{(mz+n)^2}$$

and this double sum converges. Normalizing we have

$$E_2 = 1 - 24 \sum_{n \geq 0} \sigma_1(n) q^n.$$
Quasimodular forms

If we apply the Eisenstein series construction to $k = 2$, we run into problems because of non-absolute convergence. However, we can define

$$G_2(z) = \sum_{n \neq 0} \frac{1}{n^2} + \sum_{m \neq 0} \sum_{n \in \mathbb{Z}} \frac{1}{(mz + n)^2}$$

and this double sum converges. Normalizing we have

$$E_2 = 1 - 24 \sum_{n \geq 0} \sigma_1(n) q^n.$$
Quasimodular forms

If we apply the Eisenstein series construction to $k = 2$, we run into problems because of non-absolute convergence. However, we can define

$$G_2(z) = \sum_{n \neq 0} \frac{1}{n^2} + \sum_{m \neq 0} \sum_{n \in \mathbb{Z}} \frac{1}{(mz + n)^2}$$

and this double sum converges. Normalizing we have

$$E_2 = 1 - 24 \sum_{n \geq 0} \sigma_1(n) q^n.$$

The only problem is that E_2 is not a genuine modular form:

$$E_2(-1/z) = z^2 E_2(z) - \frac{6i}{\pi} z.$$
Quasimodular forms II

Together with modular forms, E_2 generates the algebra of quasi-modular forms.

It can also be obtained by differentiating modular forms. For $f(z) = \sum a_n q^n$ with $q = \exp(2\pi i z)$, define $f'(z) := (Df)(z) := \frac{1}{2\pi i} \frac{df}{dq} = \frac{1}{2\pi i} \frac{df}{dz}$.

Then one can check $E'_4 = \frac{E_2 E_4 - E_6}{3}$ and $E'_6 = \frac{E_2 E_6 - E_2^3}{2}$.

In general differentiating a weight k modular forms of weight ℓ times yields a polynomial in E_2 of degree ℓ, and the resulting quasimodular form has weight $k + 2\ell$. We call ℓ the depth of the quasimodular form.
Together with modular forms, E_2 generates the algebra of quasi-modular forms.

It can also be obtained by differentiating modular forms. For

$$f(z) = \sum a_n q^n \text{ with } q = \exp(2\pi i z),$$

define

$$f'(z) := (Df)(z) := \frac{df}{dq} = \frac{1}{2\pi i} \frac{df(z)}{dz}.$$
Together with modular forms, E_2 generates the algebra of quasi-modular forms.

It can also be obtained by differentiating modular forms. For

$$f(z) = \sum a_n q^n \text{ with } q = \exp(2\pi iz),$$

define

$$f'(z) := (Df)(z) := q \frac{df}{dq} = \frac{1}{2\pi i} \frac{df(z)}{dz}.$$

Then one can check

$$E_4' = (E_2 E_4 - E_6)/3 \text{ and } E_6' = (E_2 E_6 - E_4^2)/2.$$
Quasimodular forms II

Together with modular forms, E_2 generates the algebra of quasi-modular forms.

It can also be obtained by differentiating modular forms. For

$$f(z) = \sum a_n q^n \text{ with } q = \exp(2\pi i z),$$

define

$$f'(z) := (Df)(z) := q \frac{df}{dq} = \frac{1}{2\pi i} \frac{df(z)}{dz}.$$

Then one can check

$$E_4' = (E_2E_4 - E_6)/3 \text{ and } E_6' = (E_2E_6 - E_4^2)/2.$$

In general differentiating a weight k modular forms of weight ℓ times yields a polynomial in E_2 of degree ℓ, and the resulting quasimodular form has weight $k + 2\ell$. We call ℓ the depth of the quasimodular form.
The magic functions for sphere packing arise as (Laplace) transforms of weakly holomorphic modular or quasi-modular forms.
Even eigenfunction

The magic functions for sphere packing arise as (Laplace) transforms of weakly holomorphic modular or quasi-modular forms.

Consider the weakly holomorphic quasi-modular form of depth 2

\[\phi_0 = \frac{(E_4 E_2 - E_6)^2}{\Delta} \]
The magic functions for sphere packing arise as (Laplace) transforms of weakly holomorphic modular or quasi-modular forms. Consider the weakly holomorphic quasi-modular form of depth 2

$$\phi_0 = \frac{(E_4E_2 - E_6)^2}{\Delta}$$

and for $r > \sqrt{2}$, define

$$a(r) = -4 \sin(\pi r^2/2)^2 \int_0^{i\infty} \phi_0 \left(\frac{-1}{z} \right) z^2 e^{\pi i r^2 z} \, dz.$$
The magic functions for sphere packing arise as (Laplace) transforms of weakly holomorphic modular or quasi-modular forms.

Consider the weakly holomorphic quasi-modular form of depth 2

\[
\phi_0 = \frac{(E_4 E_2 - E_6)^2}{\Delta}
\]

and for \(r > \sqrt{2} \), define

\[
a(r) = -4 \sin\left(\frac{\pi r^2}{2}\right)^2 \int_0^{i\infty} \phi_0 \left(\frac{-1}{z} \right) z^2 e^{\pi i r^2 z} dz.
\]

We can extend give an alternative expression for the integral which extends the domain of definition to \(r > 0 \).
Note that:

- \(\phi_0(-1/(it))t^2 = O(\exp(2\pi t)) \) as \(t \to \infty \). So the integral has a term proportional to

\[
\int_0^\infty \exp(-\pi(r^2 - 2)t)dt = \frac{1}{\pi(r^2 - 2)}
\]

which downgrades the double zero of \(\sin(\pi r^2/2)^2 \) to a single zero, as we wanted.
Note that:

- $\phi_0(-1/(it))t^2 = O(\exp(2\pi t))$ as $t \to \infty$. So the integral has a term proportional to

$$
\int_0^\infty \exp(-\pi(r^2 - 2)t)dt = \frac{1}{\pi(r^2 - 2)}
$$

which downgrades the double zero of $\sin(\pi r^2/2)^2$ to a single zero, as we wanted.

- The quasi-modular property of ϕ_0 can be used to show that $a(r)$ is an even eigenfunction: the Fourier transform replaces $e^{\pi ir^2z}$ by $z^{-4}e^{\pi ir^2(-1/z)}$ and then we can use transformation properties under $z \to -1/z$.

Abhinav Kumar (Stony Brook, ICTS)
Recent breakthroughs in sphere packing
November 8, 2019 34 / 47
Write

\[-4 \sin^2(\pi r^2/2) = -2(1 - \cos(\pi r^2)) = \exp(\pi i r^2) + \exp(-\pi i r^2) - 2.\]
Even eigenfunction III

Write

\[-4 \sin^2(\frac{\pi r^2}{2}) = -2(1 - \cos(\pi r^2)) = \exp(\pi ir^2) + \exp(-\pi ir^2) - 2.\]

So

\[a(r) = \int_0^{i\infty} \phi_0(-1/z)z^2 \left(e^{\pi ir^2(z+1)} + e^{\pi ir^2(z-1)} - 2e^{\pi ir^2z} \right) dz\]
Even eigenfunction III

Write

\[-4 \sin^2(\pi r^2/2) = -2(1 - \cos(\pi r^2)) = \exp(\pi ir^2) + \exp(-\pi ir^2) - 2.\]

So

\[a(r) = \int_0^{i\infty} \phi_0\left(-1/z\right) z^2 \left(e^{\pi ir^2(z+1)} + e^{\pi ir^2(z-1)} - 2e^{\pi ir^2z} \right) dz\]

\[= \int_0^{i\infty} \phi_0\left(-1/z\right) z^2 e^{\pi ir^2(z+1)} dz + \int_0^{i\infty} \phi_0\left(-1/z\right) z^2 e^{\pi ir^2(z-1)} dz\]

\[-2 \int_0^{i\infty} \phi_0\left(-1/z\right) z^2 e^{\pi ir^2} dz\]
Write

\[-4 \sin^2(\pi r^2/2) = -2(1 - \cos(\pi r^2)) = \exp(\pi i r^2) + \exp(-\pi i r^2) - 2.\]

So

\[a(r) = \int_0^{i \infty} \phi_0(-1/z)z^2 \left(e^{\pi i r^2(z+1)} + e^{\pi i r^2(z-1)} - 2e^{\pi i r^2 z} \right) dz\]

\[= \int_0^{i \infty} \phi_0(-1/z)z^2 e^{\pi i r^2(z+1)} dz + \int_0^{i \infty} \phi_0(-1/z)z^2 e^{\pi i r^2(z-1)} dz\]

\[-2 \int_0^{i \infty} \phi_0(-1/z)z^2 e^{\pi i r^2} dz\]

\[= \int_1^{i \infty+1} \phi_0 \left(\frac{-1}{u - 1} \right) (u - 1)^2 e^{\pi i r^2 u} du + \int_{-1}^{i \infty-1} \phi_0 \left(\frac{-1}{u + 1} \right) (u + 1)^2 e^{\pi i r^2 u} du\]

\[-2 \int_0^{i \infty} \phi_0(-1/z)z^2 e^{\pi i r^2 z} du\]
We can shift the contour at infinity, and break up the path.

\[
a(r) = \int_{1}^{i} \phi_0 \left(\frac{-1}{z-1} \right) (z - 1)^2 e^{\pi i r^2 z} \, dz + \int_{i}^{i\infty} \phi_0 \left(\frac{-1}{z-1} \right) (z - 1)^2 e^{\pi i r^2 z} \, dz \\
+ \int_{-1}^{i} \phi_0 \left(\frac{-1}{z+1} \right) (z + 1)^2 e^{\pi i r^2 z} \, dz + \int_{i}^{i\infty} \phi_0 \left(\frac{-1}{z+1} \right) (z + 1)^2 e^{\pi i r^2 z} \, dz \\
- 2 \int_{0}^{i} \phi_0(-1/z) z^2 e^{\pi i r^2} \, dz - 2 \int_{i}^{i\infty} \phi_0(-1/z) z^2 e^{\pi i r^2} \, dz
\]
Even eigenfunction IV

We can shift the contour at infinity, and break up the path.

\[
a(r) = \int_{1}^{i} \phi_0 \left(\frac{-1}{z-1} \right) (z - 1)^2 e^{\pi i r^2 z} \, dz + \int_{i}^{i\infty} \phi_0 \left(\frac{-1}{z-1} \right) (z - 1)^2 e^{\pi i r^2 z} \, dz \\
+ \int_{-1}^{i} \phi_0 \left(\frac{-1}{z+1} \right) (z + 1)^2 e^{\pi i r^2 z} \, dz + \int_{i}^{i\infty} \phi_0 \left(\frac{-1}{z+1} \right) (z + 1)^2 e^{\pi i r^2 z} \, dz \\
- 2 \int_{0}^{i} \phi_0(-1/z) z^2 e^{\pi i r^2} \, dz - 2 \int_{i}^{i\infty} \phi_0(-1/z) z^2 e^{\pi i r^2} \, dz
\]

We will combine the second, fourth and sixth integrals. Note that

\[
z^2 \phi_0(-1/z) = z^2 \phi_0(z) + z \phi_{-2}(z) + \phi_{-4}(z)
\]

where \(\phi_0, \phi_{-2}, \phi_{-4} \) are quasimodular forms of depth 2, 1, 0 and weight 0, −2, −4 respectively. In any case, they are all invariant under \(T \).
Therefore, the second difference operator just acts on the multipliers on $z^2, z, 1$, yielding

$$\phi_0 \left(\frac{-1}{z+1} \right) (z+1)^2 + \phi_0 \left(\frac{-1}{z-1} \right) (z-1)^2 - \phi_0 \left(\frac{-1}{z} \right) z^2$$

$$= \phi_0(z)((z+1)^2 + (z-1)^2 - 2z^2) = 2\phi_0(z).$$
Therefore, the second difference operator just acts on the multipliers on \(z^2, z, 1 \), yielding

\[
\phi_0 \left(\frac{-1}{z + 1} \right) (z + 1)^2 + \phi_0 \left(\frac{-1}{z - 1} \right) (z - 1)^2 - \phi_0 \left(\frac{-1}{z} \right) z^2 \\
= \phi_0(z)((z + 1)^2 + (z - 1)^2 - 2z^2) = 2\phi_0(z).
\]

Therefore

\[
a(r) = \int_1^i \phi_0 \left(\frac{-1}{z - 1} \right) (z - 1)^2 e^{\pi ir^2z} \, dz + \int_{-1}^i \phi_0 \left(\frac{-1}{z + 1} \right) (z + 1)^2 e^{\pi ir^2z} \, dz \\
- 2 \int_0^i \phi_0 \left(-1/z \right) z^2 e^{\pi ir^2z} \, dz + 2 \int_{i}^{i\infty} 2\phi_0(z)e^{\pi ir^2z} \, dz.
\]
We have

\[\hat{a}(r) = \int_{1}^{i} \phi_0 \left(\frac{-1}{z-1} \right) \frac{(z - 1)^2}{z^4} e^{\pi i r^2 \left(\frac{-1}{z} \right)} \, dz + \int_{-1}^{i} \phi_0 \left(\frac{-1}{z+1} \right) \frac{(z + 1)^2}{z^4} e^{\pi i r^2 \left(\frac{-1}{z} \right)} \, dz
\]

\[- 2 \int_{0}^{i} \phi_0(-1/z) z^2 z^{-4} e^{\pi i r^2 (-1/z)} \, dz - 2 \int_{i}^{i\infty} 2\phi_0(z) z^{-4} e^{\pi i r^2 (-1/z)} \, dz \]
We have

\[\hat{a}(r) = \int_{-1}^{i} \phi_0 \left(\frac{-1}{z-1} \right) \frac{(z - 1)^2}{z^4} e^{\pi i r^2 \left(\frac{-1}{z} \right)} \, dz + \int_{-1}^{i} \phi_0 \left(\frac{-1}{z+1} \right) \frac{(z + 1)^2}{z^4} e^{\pi i r^2 \left(\frac{-1}{z} \right)} \, dz \]

\[- 2 \int_{0}^{i} \phi_0 (-1/z) z^2 z^{-4} e^{\pi i r^2 (-1/z)} \, dz - 2 \int_{i}^{i \infty} 2 \phi_0 (z) z^{-4} e^{\pi i r^2 (-1/z)} \, dz \]

\[= \int_{-1}^{i} \phi_0 \left(1 - \frac{1}{w+1} \right) (w + 1)^2 e^{\pi i r^2 w} \, dw + \int_{1}^{i} \phi_0 \left(\frac{-1}{w-1} - 1 \right) (w - 1)^2 e^{\pi i r^2 w} \, dw \]

\[- 2 \int_{i \infty}^{i} \phi_0 (w) e^{\pi i r^2 w} \, dw + 2 \int_{i}^{0} 2 \phi_0 (-1/w) w^2 e^{\pi i r^2 w} \, dw \]
Fourier transform

We have

\[\hat{a}(r) = \int_{-1}^{i} \phi_0 \left(\frac{-1}{z-1} \right) \frac{(z-1)^2}{z^4} e^{\pi i r^2 \left(\frac{-1}{z} \right)} \, dz + \int_{-1}^{i} \phi_0 \left(\frac{-1}{z+1} \right) \frac{(z+1)^2}{z^4} e^{\pi i r^2 \left(\frac{-1}{z} \right)} \, dz \]

\[- 2 \int_{0}^{i} \phi_0(-1/z) z^2 z^{-4} e^{\pi i r^2 (-1/z)} \, dz - 2 \int_{i}^{i \infty} 2\phi_0(z) z^{-4} e^{\pi i r^2 (-1/z)} \, dz \]

\[= \int_{-1}^{i} \phi_0 \left(1 - \frac{1}{w+1} \right) (w+1)^2 e^{\pi i r^2 w} \, dw + \int_{1}^{i} \phi_0 \left(\frac{-1}{w-1} - 1 \right) (w-1)^2 e^{\pi i r^2 w} \, dw \]

\[- 2 \int_{i \infty}^{i} \phi_0(w) e^{\pi i r^2 w} \, dw + 2 \int_{i}^{0} 2\phi_0(-1/w) w^2 e^{\pi i r^2 w} \, dw \]

\[= a(r). \]

using the change of variable \(z = -1/w \), \(dz = 1/w^2 \, dw \), and the \(T \)-invariance of \(\phi_0 \).
We have
\[
\hat{a}(r) = \int_{-1}^{i} \phi_0 \left(\frac{-1}{z-1} \right) \frac{(z-1)^2}{z^4} e^{\pi i r^2 \left(\frac{-1}{z} \right)} \, dz + \int_{-1}^{i} \phi_0 \left(\frac{-1}{z+1} \right) \frac{(z+1)^2}{z^4} e^{\pi i r^2 \left(\frac{-1}{z} \right)} \, dz \\
- 2 \int_{0}^{i} \phi_0 (-1/z) z^2 z^{-4} e^{\pi i r^2 (-1/z)} \, dz - 2 \int_{i}^{i \infty} 2\phi_0 (z) z^{-4} e^{\pi i r^2 (-1/z)} \, dz \\
= \int_{-1}^{i} \phi_0 \left(1 - \frac{1}{w+1} \right) (w+1)^2 e^{\pi i r^2 w} \, dw + \int_{1}^{i} \phi_0 \left(\frac{-1}{w-1} - 1 \right) (w-1)^2 e^{\pi i r^2 w} \, dw \\
- 2 \int_{i \infty}^{i} \phi_0 (w) e^{\pi i r^2 w} \, dw + 2 \int_{i}^{0} 2\phi_0 (-1/w) w^2 e^{\pi i r^2 w} \, dw \\
= a(r).
\]

using the change of variable \(z = -1/w, \, dz = 1/w^2 \, dw \), and the \(T \)-invariance of \(\phi_0 \).

So we have created a \(+1 \)-eigenfunction for the Fourier transform.
Odd eigenfunction

Let

\[\psi = \frac{2W^3(5UV + 2W^2)}{\Delta}. \]

It is a weakly holomorphic modular form of weight -2 for the congruence subgroup $\Gamma_0(2)$.
Let
\[\psi = \frac{2W^3(5UV + 2W^2)}{\Delta}. \]

It is a weakly holomorphic modular form of weight \(-2\) for the congruence subgroup \(\Gamma_0(2)\).

Define
\[b(r) = -4r^2 \sin(\pi r^2/2)^2 \int_0^{i\infty} \psi(z)e^{\pi ir^2z} \, dz. \]

We can similarly show that \(b(r)\) is an odd eigenfunction for the Fourier transform, and has a single root at \(r = \sqrt{2}\) and double roots at other \(\sqrt{2}n\).
Let
\[\psi = \frac{2W^3(5UV + 2W^2)}{\Delta}. \]
It is a weakly holomorphic modular form of weight -2 for the congruence subgroup $\Gamma_0(2)$.

Define
\[b(r) = -4r^2 \sin(\pi r^2/2)^2 \int_0^{i\infty} \psi(z) e^{\pi ir^2z} \, dz. \]

We can similarly show that $b(r)$ is an odd eigenfunction for the Fourier transform, and has a single root at $r = \sqrt{2}$ and double roots at other $\sqrt{2n}$.
Odd eigenfunction II

Write \(\psi_T = \psi|_{-2T} \) and \(\psi_S = \psi|_{-2S} \). Then it is easy to verify that \(\psi_S + \psi_T = \psi \), from which it follows that \(\psi_T|_{-2S} = -\psi_T \). Also, \(\psi_S|_{-2S} = \psi \) and finally \(\psi|_{-2} T^{-1} = \psi_T \) since \(T^{-2} \in \Gamma(2) \).
Write $\psi_T = \psi|_{-2}^T$ and $\psi_S = \psi|_{-2}^S$. Then it is easy to verify that $\psi_S + \psi_T = \psi$, from which it follows that $\psi_T|_{-2}^S = -\psi_T$. Also, $\psi_S|_{-2}^S = \psi$ and finally $\psi|_{-2}^T^{-1} = \psi_T$ since $T^{-2} \in \Gamma(2)$.

We rewrite the integral as before

$$b(r) = \int_0^{i\infty} \psi(z)e^{\pi ir^2(z+1)}dz + \int_0^{i\infty} \psi(z)e^{\pi ir^2(z-1)}dz$$

$$- 2 \int_0^{i\infty} \psi(z)e^{\pi ir^2z}dz$$
Odd eigenfunction II

Write $\psi_T = \psi|_{-2}^T$ and $\psi_S = \psi|_{-2}^S$. Then it is easy to verify that $\psi_S + \psi_T = \psi$, from which it follows that $\psi_T|_{-2}^S = -\psi_T$. Also, $\psi_S|_{-2}^S = \psi$ and finally $\psi|_{-2}^T T^{-1} = \psi_T$ since $T^{-2} \in \Gamma(2)$.

We rewrite the integral as before

$$b(r) = \int_0^{i\infty} \psi(z) e^{\pi i r^2(z+1)} dz + \int_0^{i\infty} \psi(z) e^{\pi i r^2(z-1)} dz$$

$$- 2 \int_0^{i\infty} \psi(z) e^{\pi i r^2 z} dz$$

$$= \int_1^{i\infty} \psi(z - 1) e^{\pi i r^2 z} dz + \int_{-1}^{i\infty} \psi(z + 1) e^{\pi i r^2 z} dz$$

$$- 2 \int_0^{i\infty} \psi(z) e^{\pi i r^2 z} dz$$
Odd eigenfunction II

Write $\psi_T = \psi|_{-2} T$ and $\psi_S = \psi|_{-2} S$. Then it is easy to verify that $\psi_S + \psi_T = \psi$, from which it follows that $\psi_T|_{-2} S = -\psi_T$. Also, $\psi_S|_{-2} S = \psi$ and finally $\psi|_{-2} T^{-1} = \psi_T$ since $T^{-2} \in \Gamma(2)$.

We rewrite the integral as before

$$b(r) = \int_0^{i\infty} \psi(z)e^{\pi ir^2(z+1)} dz + \int_0^{i\infty} \psi(z)e^{\pi ir^2(z-1)} dz$$

$$- 2 \int_0^{i\infty} \psi(z)e^{\pi ir^2 z} dz$$

$$= \int_1^{i\infty} \psi(z - 1)e^{\pi ir^2 z} dz + \int_{-1}^{i\infty} \psi(z + 1)e^{\pi ir^2 z} dz$$

$$- 2 \int_0^{i\infty} \psi(z)e^{\pi ir^2 z} dz$$

$$= \int_1^{i\infty} \psi_T(z)e^{\pi ir^2 z} dz + \int_{-1}^{i\infty} \psi_T(z)e^{\pi ir^2 z} dz - 2 \int_0^{i\infty} \psi(z)e^{\pi ir^2 z} dz$$
Odd eigenfunction III

\[b(r) = \int_{-1}^{1} \psi_T(z)e^{\pi ir^2z} \, dz + \int_{0}^{i} \psi(z)e^{\pi ir^2z} \, dz - 2 \int_{0}^{i} \psi(z)e^{\pi ir^2z} \, dz + 2 \int_{i}^{i\infty} (\psi_T(z) - \psi(z))e^{\pi ir^2z} \, dz \]
Odd eigenfunction III

\[b(r) = \int_{1}^{i} \psi_T(z)e^{\pi ir^2z} \, dz + \int_{-1}^{i} \psi_T(z)e^{\pi ir^2z} \, dz - 2 \int_{0}^{i} \psi(z)e^{\pi ir^2z} \, dz \]

\[+ 2 \int_{i}^{i \infty} (\psi_T(z) - \psi(z))e^{\pi ir^2z} \, dz \]

\[= \int_{1}^{i} \psi_T(z)e^{\pi ir^2z} \, dz + \int_{-1}^{i} \psi_T(z)e^{\pi ir^2z} \, dz - 2 \int_{0}^{i} \psi(z)e^{\pi ir^2z} \, dz \]

\[- 2 \int_{i}^{i \infty} \psi_S(z)e^{\pi ir^2z} \, dz. \]
Odd eigenfunction III

\[b(r) = \int_1^i \psi_T(z) e^{\pi ir^2 z} dz + \int_{-1}^i \psi_T(z) e^{\pi ir^2 z} dz - 2 \int_0^i \psi(z) e^{\pi ir^2 z} dz \\
+ 2 \int_i^{i\infty} (\psi_T(z) - \psi(z)) e^{\pi ir^2 z} dz \\
= \int_1^i \psi_T(z) e^{\pi ir^2 z} dz + \int_{-1}^i \psi_T(z) e^{\pi ir^2 z} dz - 2 \int_0^i \psi(z) e^{\pi ir^2 z} dz \\
- 2 \int_i^{i\infty} \psi_S(z) e^{\pi ir^2 z} dz. \]

This extends the domain of definition to \(r > 0 \). Note that \(\psi(it) = O(e^{2\pi t}) \) as \(t \to \infty \) gives a pole at \(r = \sqrt{2} \) for the integral, just as in the even case.

To check that we have an odd eigenfunction, we compute
\[\hat{b}(r) = \int_{1}^{i} \psi_{T}(z)z^{-4}e^{\pi ir^{2}(-1/z)}dz + \int_{-1}^{i} \psi_{T}(z)z^{-4}e^{\pi ir^{2}(-1/z)}dz \]
\[- 2 \int_{0}^{i} \psi(z)z^{-4}e^{\pi ir^{2}(-1/z)}dz - 2 \int_{i}^{i\infty} \psi_{S}(z)z^{-4}e^{\pi ir^{2}(-1/z)}dz \]
\[\hat{b}(r) = \int_{1}^{i} \psi_T(z) z^{-4} e^{\pi i r^2 (-1/z)} dz + \int_{-1}^{i} \psi_T(z) z^{-4} e^{\pi i r^2 (-1/z)} dz \]

\[- 2 \int_{0}^{i} \psi(z) z^{-4} e^{\pi i r^2 (-1/z)} dz - 2 \int_{i}^{i \infty} \psi_S(z) z^{-4} e^{\pi i r^2 (-1/z)} dz \]

\[= \int_{1}^{i} \psi_T(-1/w) w^2 e^{\pi i r^2 w} dw + \int_{-1}^{i} \psi_T(-1/w) w^2 e^{\pi i r^2 w} dw \]

\[- 2 \int_{0}^{i} \psi(-1/w) w^2 e^{\pi i r^2 w} dw - 2 \int_{i}^{i \infty} \psi_S(-1/w) w^2 e^{\pi i r^2 w} dw \]
\[\hat{b}(r) = \int_{1}^{i} \psi_T(z) z^{-4} e^{\pi i r^2 (-1/z)} dz + \int_{-1}^{i} \psi_T(z) z^{-4} e^{\pi i r^2 (-1/z)} dz \]

\[-2 \int_{0}^{i} \psi(z) z^{-4} e^{\pi i r^2 (-1/z)} dz - 2 \int_{i}^{i\infty} \psi_S(z) z^{-4} e^{\pi i r^2 (-1/z)} dz \]

\[= \int_{1}^{i} \psi_T(-1/w) w^2 e^{\pi i r^2 w} dw + \int_{-1}^{i} \psi_T(-1/w) w^2 e^{\pi i r^2 w} dw \]

\[-2 \int_{0}^{i} \psi(-1/w) w^2 e^{\pi i r^2 w} dw - 2 \int_{i}^{i\infty} \psi_S(-1/w) w^2 e^{\pi i r^2 w} dw \]

\[= \int_{-1}^{i} \psi_{TS}(w) e^{\pi i r^2 w} dw + \int_{1}^{i} \psi_{TS}(w) e^{\pi i r^2 w} dw \]

\[-2 \int_{\infty}^{i} \psi_S(w) e^{\pi i r^2 w} dw - 2 \int_{i}^{0} \psi(w) e^{\pi i r^2 w} dw \]
Odd eigenfunction V

So

\[\hat{b}(r) = -\int_{-1}^{i} \psi_T(w) e^{\pi ir^2 w} \, dw - \int_{1}^{i} \psi_T(w) e^{\pi ir^2 w} \, dw \]

\[+ 2 \int_{i}^{\infty} \psi_S(w) e^{\pi ir^2 w} \, dw + 2 \int_{0}^{i} \psi(w) e^{\pi ir^2 w} \, dw \]

\[= -b(r) \]

where we used \(\psi_{TS} = -\psi_T \).
Putting everything together

Now, we can take a linear combination of $a(r)$ and $b(r)$ to make f such that f and \hat{f} have the desired properties (for instance, to make \hat{f} vanish to order 2 at $\sqrt{2}$.)
Putting everything together

Now, we can take a linear combination of $a(r)$ and $b(r)$ to make f such that f and \hat{f} have the desired properties (for instance, to make \hat{f} vanish to order 2 at $\sqrt{2}$.

One still has to verify that there are no extra roots, but this can be done by analyzing the underlying integrands.
Now, we can take a linear combination of $a(r)$ and $b(r)$ to make f such that f and \hat{f} have the desired properties (for instance, to make \hat{f} vanish to order 2 at $\sqrt{2}$.

One still has to verify that there are no extra roots, but this can be done by analyzing the underlying integrands.

At the moment, this last verification of the required inequalities needs a computer-assisted proof.
Leech lattice

The proof of optimality of Leech in \mathbb{R}^{24} proceeds along similar lines, though it is more complicated.

We just write down the kernels here, which have the same form.
Leech lattice

The proof of optimality of Leech in \mathbb{R}^{24} proceeds along similar lines, though it is more complicated.

We just write down the kernels here, which have the same form.

For the even eigenfunction, the integrand has the weakly holomorphic quasimodular form

$$\phi = \frac{(25E^4_4 - 49E^2_6E_4) + 48E_6E^2_4E_2 + (-49E^3_4 + 25E^2_6)E^2_2}{\Delta^2}.$$
Leech lattice

The proof of optimality of Leech in \mathbb{R}^{24} proceeds along similar lines, though it is more complicated.

We just write down the kernels here, which have the same form.

For the even eigenfunction, the integrand has the weakly holomorphic quasimodular form

$$\phi = \frac{(25E_4^4 - 49E_6^2E_4) + 48E_6E_4^2E_2 + (-49E_4^3 + 25E_6^2)E_2^2}{\Delta^2}.$$

For the odd eigenfunction, the integrand has the weakly holomorphic modular form for $\Gamma(2)$

$$\psi = \frac{W^5(7UV + 2W^2)}{\Delta^2}.$$
One big open problem is to find magic functions for dimension 2 (even though we know the A_2 lattice gives the densest sphere packing, by a relatively elementary argument).
One big open problem is to find magic functions for dimension 2 (even though we know the A_2 lattice gives the densest sphere packing, by a relatively elementary argument).

In other dimensions, we do not expect this technique to give sharp bounds, but it may yield better upper bounds for sphere packing than the current records.
One big open problem is to find magic functions for dimension 2 (even though we know the A_2 lattice gives the densest sphere packing, by a relatively elementary argument).

In other dimensions, we do not expect this technique to give sharp bounds, but it may yield better upper bounds for sphere packing than the current records.

We have since also worked on a wide generalization of the sphere packing problem to energy minimization, and have proved that E_8 and the Leech lattice are universally optimal for Gaussian (and therefore inverse power law) potential functions in their respective dimensions, via sharp LP bounds for energy.
References:

References:

Thank you!