Non-normal matrices: spectral instability, pseudospectrum, and random perturbation

Anirban Basak

International Centre for Theoretical Sciences (ICTS)
Tata Institute of Fundamental Research (TIFR)
October 20, 2023
Eigenfunctions Seminar, Indian Institute of Science

Non-normal operators

Normal operator/matrix: $N N^{\star}=N^{\star} N$;
Non-normal: $N N^{\star} \neq N^{\star} N$.
Examples of non-normal operators/matrices:

- Kramers-Fokker-Planck type operators
- PDE solvability theory
- Damped wave equations
- Open quantum systems

■ Scattering theory - long term behavior of a quantum particle

- Linearized operators from models in fluid dynamics

■ Evolution driven by non-normal operators

Spectral instability of non-normal operators

For any bounded normal operator N

$$
\left\|(N-z)^{-1}\right\|=\frac{1}{\operatorname{dist}(z, \operatorname{Spec}(N))}, \quad z \notin \operatorname{Spec}(N)
$$

Spectral instability of non-normal operators

For a non-normal operator N and $z \notin \operatorname{Spec}(N)$ one has either

$$
\left\|(N-z)^{-1}\right\| \asymp \frac{1}{\operatorname{dist}(z, \operatorname{Spec}(N))}
$$

(zone of spectral stability)
or

$$
\left\|(N-z)^{-1}\right\| \gg \frac{1}{\operatorname{dist}(z, \operatorname{Spec}(N))} .
$$

Spectral instability of non-normal operators

Example: Left shift operator on $\mathbb{C}^{N} /$ Jordan block

$$
J_{N}:=\left[\begin{array}{cccccc}
0 & 1 & & & & \\
& 0 & 1 & & & \\
& & \ddots & \ddots & & \\
& & & 0 & 1 & \\
& & & & 0 & 1 \\
& & & & & 0
\end{array}\right], \quad \operatorname{Spec}\left(J_{N}\right)=\{0\} .
$$

Zone of spectral instability: For $z \in D(0,1):=\{w \in \mathbb{C}:|w|<1\}$

$$
\begin{gathered}
\left\|\left(J_{N}-z\right) v\right\|_{2}=|z|^{N} \Rightarrow\left\|\left(J_{N}-z\right)^{-1}\right\| \geqslant|z|^{-N} \\
v:=\left(\begin{array}{lllll}
1 & z & z^{2} & \cdots & z^{N-1}
\end{array}\right)^{\top} \quad \Rightarrow \quad\|v\|_{2} \asymp 1 .
\end{gathered}
$$

Zone of spectral stability: For $z \in \mathbb{C} \backslash \overline{D(0,1)}$.

$$
\left\|\left(J_{N}-z\right)^{-1}\right\| \asymp 1 .
$$

Spectral instability of non-normal operators

$$
J_{N}-z:=\left[\begin{array}{cccccc}
-z & 1 & & & & \\
& -z & 1 & & & \\
& & \ddots & \ddots & & \\
& & & -z & 1 & \\
& & & & -z & 1 \\
& & & & & -z
\end{array}\right]
$$

Zone of spectral instability: For $z \in D(0,1):=\{w \in \mathbb{C}:|w|<1\}$

$$
\begin{gathered}
\left\|\left(J_{N}-z\right) v\right\|_{2}=|z|^{N} \Rightarrow\left\|\left(J_{N}-z\right)^{-1}\right\| \geqslant|z|^{-N} \\
v \\
:=\left(\begin{array}{lllll}
1 & z & z^{2} & \cdots & z^{N-1}
\end{array}\right)^{\top} \quad \Rightarrow \quad\|v\|_{2} \asymp 1 .
\end{gathered}
$$

Zone of spectral stability: For $z \in \mathbb{C} \backslash \overline{D(0,1)}$.

$$
\left\|\left(J_{N}-z\right)^{-1}\right\| \asymp 1 .
$$

Challenges with non-normal matrices

(i) The eigenvalue analysis in many applications turns out to be misleading.
(ii) The eigenvalues are sensitive to perturbations and thereby often yielding unreliable results.

Challenges with non-normal matrices

Example 1. Set $f_{A}(t):=\|\exp (t A)\|, f_{B}(t):=\|\exp (t B)\|, t \geqslant 0$ ($\|\cdot\|$ denotes the operator norm),

$$
A=\left(\begin{array}{cc}
-1 & 1 \\
0 & -1
\end{array}\right) \text { and } B=\left(\begin{array}{cc}
-1 & 5 \\
0 & -2
\end{array}\right) .
$$

- For large t 's the slopes of the curves are determined via an eigenvalue analysis.
- Slopes for $t \asymp 1$?

Challenges with non-normal matrices

$$
\begin{aligned}
A & =\left(\begin{array}{cc}
-1 & 1 \\
0 & -1
\end{array}\right) \\
B & =\left(\begin{array}{cc}
-1 & 5 \\
0 & -2
\end{array}\right)
\end{aligned}
$$

- The 'hump'-like structure of the curve $\left\{f_{B}(t)\right\}_{t \geqslant 0}$ cannot be explained solely by the eigenvalues of B.
- Such hump-like structure are ubiquitous in dynamical systems, commonly known as the transient behaviors.
(Example taken from the book by Trefethen and Embree)

Challenges with non-normal matrices

Example 2. Simulate a uniformly random unitary matrix U_{N} and set $\widehat{J}_{N}:=U_{N} J_{N} U_{N}^{*} . \operatorname{Spec}\left(J_{N}\right)=\operatorname{Spec}\left(\widehat{J}_{N}\right)=\{0\}$.
$J_{N}:=\left[\begin{array}{cccccc}0 & 1 & & & & \\ & 0 & 1 & & & \\ & & \ddots & \ddots & & \\ & & & 0 & 1 & \\ & & & & 0 & 1 \\ & & & & & 0\end{array}\right]$

Figure: $N=1000$. Eigenvalues of \widehat{J}_{N} computed through Mathematica are plotted in blue and the unit circle \mathbb{S}^{1} on the complex plane is in black.

Challenges with non-normal matrices

Example 3. Simulate a Haar U_{N}. Compute the eigenvalues of $U_{N} H_{N} U_{N}^{*} . N=1000$.

$$
\begin{gathered}
H_{N}:=J_{N}+D_{N} \\
D_{N}=\operatorname{diag}\left(\left\{d_{i}\right\}_{i=1}^{N}\right) \\
d_{i}=-2+\frac{4 i}{N}, i=1,2, \ldots, N
\end{gathered}
$$

Twisted Toeplitz / Toeplitz with variable coefficients

Challenges with non-normal matrices

Example 4. Simulate a Haar U_{N}. Compute the eigenvalues of $U_{N} \widetilde{H}_{N} U_{N}^{*} . \quad N=1000$.

$$
\widetilde{H}_{N}:=J_{N}+\widetilde{D}_{N}
$$

$$
\widetilde{D}_{N}=\operatorname{diag}\left(\left\{X_{i}\right\}_{i=1}^{N}\right)
$$

$$
\left\{X_{i}\right\} \text { i.i.d. Unif }[-2,2]
$$

Non-periodic one-way model - "limit" of Hatano-Nelson model (due to Brézin, Feinberg, and Zee)

Eigenvalues move to the 'Hatano-Nelson bubble'

Challenges with non-normal matrices

Remark. Recall $H_{N}=J_{N}+D_{N}$ and $\widetilde{H}_{N}=J_{N}+\widetilde{D}_{N}$, with

$$
\begin{aligned}
D_{N}=\operatorname{diag}\left(\left\{d_{i}\right\}\right), & d_{i}=-2+\frac{4 i}{N}, i=1,2, \ldots, N, \\
\widetilde{D}_{N}:=\operatorname{diag}\left(\left\{X_{i}\right\}\right), & \left\{X_{i}\right\} \text { i.i.d. Unif }[-2,2] .
\end{aligned}
$$

Hence

$$
\frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i}\left(H_{N}\right)} \Rightarrow \operatorname{Unif}[-2,2], \quad \text { and } \quad \frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i}\left(\widetilde{H}_{N}\right)} \Rightarrow \operatorname{Unif}[-2,2]
$$

However, simulated spectrums of $U_{N} H_{N} U_{N}^{*}$ and $U_{N} \widetilde{H}_{N} U_{N}^{*}$ are completely different.

```
\varepsilon-pseudospectrum ( }\varepsilon>0
```

(1). $\operatorname{Spec}_{\varepsilon}(A):=\operatorname{Spec}(A) \cup\left\{z \in \mathbb{C} \backslash \operatorname{Spec}(A):\left\|(A-z)^{-1}\right\| \geqslant \varepsilon^{-1}\right\}$

$$
\text { (2). } \operatorname{Spec}_{\varepsilon}(A)=\bigcup_{\|E\| \leqslant \varepsilon} \operatorname{Spec}(A+E)
$$

(3). $z \in \operatorname{Spec}_{\varepsilon}(A) \Leftrightarrow z \in \operatorname{Spec}(A)$ or $\exists v_{z}$ s.t. $\left\|(A-z) v_{z}\right\| \leqslant \varepsilon\left\|v_{z}\right\|$

$$
(1) \Leftrightarrow(2) \Leftrightarrow(3)
$$

[Varah '79], [Trefethen, Embree '05]

For any $A \in \mathbb{C}^{N \times N}$ and any $\varepsilon>0$

$$
\operatorname{Spec}_{\varepsilon}(A) \supset \operatorname{Spec}(A)+D(0, \varepsilon)
$$

If $\|\cdot\|=\|\cdot\|_{2}$ and $A \in \mathbb{C}^{N \times N}$ then

$$
A \text { normal } \Leftrightarrow \operatorname{Spec}_{\varepsilon}(A)=\operatorname{Spec}(A)+D(0, \varepsilon) \forall \varepsilon>0
$$

More generally, if $A=V \Lambda V^{-1}$ is diagonalizable then

$$
\operatorname{Spec}_{\varepsilon}(A) \subset \operatorname{Spec}(A)+D(0, \varepsilon \kappa(V)), \quad \kappa(V):=\frac{s_{\max }(V)}{s_{\min }(V)}
$$

Pseudospectrum

Example 2 (revisited): For any $\delta=\delta_{N}>0$ let

$$
J_{N}^{(\delta)}:=\left[\begin{array}{cccccc}
0 & 1 & & & & \\
& 0 & 1 & & & \\
& & \ddots & \ddots & & \\
& & & 0 & 1 & \\
& & & & 0 & 1 \\
\delta & & & & & 0
\end{array}\right]
$$

Observe: Eigenvalues of $J_{N}^{(\delta)}=\left\{\delta^{1 / N} e^{2 \pi \mathrm{i} k / N}, k \in[0, N-1] \cap \mathbb{Z}\right\}$. Therefore

■ If $\delta=|z|^{N}$ for some $z \in D(0,1)$ then an exponentially small perturbation of J_{N} produces eigenvalues that are at a distance $|z|$ from $\operatorname{Spec}\left(J_{N}\right)$. Thus $\operatorname{Spec}_{r^{N}}\left(J_{N}\right) \supset D(0, r)$ for any $r \in(0,1)$.
■ If $\delta \asymp 1$ or if $\delta=O\left(N^{-\alpha}\right)$ for any $\alpha>0$ then eigenvalues of $J_{N}^{(\delta)}$ approaches $\mathbb{S}^{1}:=\partial D(0,1)$.

Pseudospectrum

Example 2 (continued):

Figure: $N=50, \varepsilon=10^{-1}, 10^{-1.2}, \ldots, 10^{-2}$. Pseudospectral level lines: J_{N} on the left panel, $C_{N}:=J_{N}^{(1)}$ on the right panel.

Pseudospectrum

Examples 3 and 4 (revisited):

$$
H_{N}:=\left[\begin{array}{ccccc}
-2+\frac{4}{N} & 1 & & & \\
& -2+\frac{8}{N} & 1 & & \\
& & \ddots & \ddots & \\
& & & 2-\frac{2}{N} & 1 \\
& & & & \tilde{H}_{N}
\end{array}\right]:=\left[\begin{array}{cccc}
X_{1} & 1 & & \\
& X_{2} & 1 & \\
& & \ddots & \ddots \\
& & & X_{N-1} \\
& & & X_{N}
\end{array}\right]
$$

$\left\{X_{i}\right\}$ are i.i.d. Unif $[-2,2]$.

Pseudospectrum

Examples 3 and 4 (revisited):

Figure: $N=100, \varepsilon=10^{-2}, 10^{-2.4}, \ldots, 10^{-4.4}$. Pseudospectral level lines: H_{N} on the left panel, \tilde{H}_{N} on the right panel.

Pseudospectrum

Example 1 (revisited):

$$
\begin{aligned}
A & =\left(\begin{array}{cc}
-1 & 1 \\
0 & -1
\end{array}\right) \\
B & =\left(\begin{array}{cc}
-1 & 5 \\
0 & -2
\end{array}\right)
\end{aligned}
$$

Pseudospectrum

Example 1 (revisited):

Figure: $\varepsilon=10^{-0.2}, 10^{-0.4}, \ldots, 10^{-1.2}$. Pseudospectral level lines: A on the left panel, B on the right panel.

Real life implications: Onset of turbulence in the plane Couette flow at a high Reynolds number.

Spectrum of the Navier-Stokes evolution operator linearized about the laminar flow contained in the left half of the plane. For a sufficiently large Reynolds number and a small $\varepsilon>0$ its ε-pseudospectrum protrudes a distance 'much' greater than ε into the right half plane, and as a result certain perturbations of the plane Couette flow grow transiently at that high Reynolds number eventually decaying due to viscosity.

Move from pseudospectrum to random perturbation

■ Pseudospectra are generally harder to characterize and computationally more expensive.

- Random perturbation is an efficient model.
- The pseudospectrum measures how much one can move the spectrum by a worst-case perturbation.
- In many physical models the perturbation of an operator is generally induced by sources that are primarily uncontrolled by experimentalists.
- Natural to study spectral features of disordered perturbations of a non-normal operators/matrices, e.g. open quantum systems.
- If the simulated $U_{N}=\mathcal{U}_{N}+\Delta_{N}$, where \mathcal{U}_{N} is a 'true' unitary and Δ_{N} captures the machine/rounding error then the spectrum of $\widehat{A}_{N}:=U_{N} A_{N} U_{N}^{\star}$ is same as that of $A_{N}+\widehat{\Delta}_{N}$.

Random perturbations of non-normal matrices

Example. For $\boldsymbol{a}(\xi):=\sum_{i=-d_{-}}^{d_{+}} a_{i} \xi^{i}$, with $\xi \in \mathbb{S}^{1}$, set

$$
T_{N}(\boldsymbol{a}):=\sum_{i \geqslant 0} a_{i} J_{N}^{i}+\sum_{i<0} a_{i}\left(J_{N}^{\star}\right)^{i} .
$$

For $\boldsymbol{a}(\xi)=2 \xi^{-3}-\xi^{-2}+2 \iota \xi^{-1}-4 \xi-2 \iota \xi^{2}$

$$
T_{N}(\boldsymbol{a}):=\left[\begin{array}{cccccccc}
0 & -4 & -2 \iota & & & & & \\
2 \iota & 0 & -4 & -2 \iota & & & & \\
-1 & 2 \iota & 0 & -4 & -2 \iota & & & \\
2 & -1 & 2 \iota & 0 & -4 & -2 \iota & & \\
& \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \\
& & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\
& & & & & 0 & -4 & -2 \iota \\
& & & 2 & -1 & 2 \iota & 0 & -4 \\
& & & & 2 & -1 & 2 \iota & 0
\end{array}\right] .
$$

Random perturbations of non-normal matrices

Figure: $N=1000$. Eigenvalues of $U_{N} A_{N} U_{N}^{\star}, U_{N}$ a simulated Haar unitary, computed through Mathematica are in blue. Eigenvalues of $A_{N}+N^{-2} G_{N}$ are in red, where G_{N} is the random matrix with i.i.d. standard complex Gaussian entries. Left panel: $A_{N}=J_{N}$, and right panel: $A_{N}=T_{N}(\boldsymbol{a})$. Symbol curves \mathbb{S}^{1} (left panel) and $a\left(\mathbb{S}^{1}\right)$ (right panel) in black.

Random perturbations of non-normal matrices

Examples 3 and 4 (revsiting again).

Figure: $N=2000$. Eigenvalues of $U_{N} A_{N} U_{N}^{\star}, U_{N}$ a simulated Haar unitary, computed through Mathematica are in blue. Eigenvalues of $A_{N}+N^{-3} G_{N}$ are in red, where G_{N} is the random matrix with i.i.d. standard complex Gaussian entries. Left panel: $A_{N}=H_{N}$, and right panel: $A_{N}=\widetilde{H}_{N}$. .

Questions

Setup:

- A_{N} an $N \times N$ non-normal matrix.
- E_{N} is a random matrix with entries that are of $O(1)$.
(e.g. i.i.d. Gaussian entries)
- Consider $A_{N}+N^{-\gamma} E_{N}$ for $\gamma>1 / 2$.

Observe $\gamma>1 / 2$ is necessary. Since $\left\|E_{N}\right\| \asymp N^{1 / 2}$.

Questions

■ Limit of the bulk of the eigenvalues. How does it depend on " $\lim _{N \rightarrow \infty} A_{N}$ "? Universal w.r.t. to the distribution of E_{N} ? W.r.t. γ ?

$$
L_{N}:=\frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i}}
$$

- Are there outliers?
stray eigenvalues away from the support of the limiting measure
If so, what is the limit (of the random point process)?
Universal/non-universal?
- How do eigenvectors look like? Localization/delocalization? Quantum unique ergodicity?

Random perturbations of non-self-adjoint operators

■ Non-self-adjoint (semiclassical) pseudodifferential operators

- probabilistic Weyl law
[Hager '06], [Hager, Sjöstrand '08], [Sjöstrand '08, '09]
[Bordeaux, Montrieux '08]
- local eigenvalue statistics
[Nonenmacher, Vogel '17]
■ Twisted Toeplitz matrices/Berezin-Toeplitz quantization of smooth functions on torus
[Christiansen, Zworski '10], [B., Paquette, Zeitouni '19]
[Vogel '20]
- Random bi-diagonal matrix/one-way model
[B., Paquette, Zeitouni '19]

Random perturbations of non-self-adjoint operators

■ Non-self-adjoint Toeplitz matrices

- probabilistic Weyl law/asymptotic eigenvalue density
[Hager, Davies '09], [Guionnet, Wood, Zeitouni '14]
[B., Paquette, Zeitouni '19, '20], [Sjöstrand, Vogel '21a, '21b]
[O'Rourke, Wood '22]
- rate of convergence, local law
[O'Rourke, Wood '22]
- limit of point process induced by outlier eigenvalues
[Sjöstrand, Vogel '17a, '17b], [B., Zeitouni '20]
- localization/scarring of eigenvectors
[B., Vogel, Zeitouni '23]

Spectrum of random perturbation of Toeplitz matrices

$$
T_{N}(\boldsymbol{a})=\left[\begin{array}{cccccc}
a_{0} & a_{1} & a_{2} & \cdots & \cdots & a_{N-1} \\
a_{-1} & a_{0} & a_{1} & \ddots & & \vdots \\
a_{-2} & a_{-1} & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & a_{1} & a_{2} \\
\vdots & & \ddots & a_{-1} & a_{0} & a_{1} \\
a_{-(N-1)} & \cdots & \cdots & a_{-2} & a_{-1} & a_{0}
\end{array}\right], a_{i} \in \mathbb{C} .
$$

Spectrum of random perturbation of Toeplitz matrices

$$
T_{N}(\boldsymbol{a})=\left[\begin{array}{cccccc}
a_{0} & a_{1} & a_{2} & \cdots & \cdots & a_{N-1} \\
a_{-1} & a_{0} & a_{1} & \ddots & & \vdots \\
a_{-2} & a_{-1} & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & a_{1} & a_{2} \\
\vdots & & \ddots & a_{-1} & a_{0} & a_{1} \\
a_{-(N-1)} & \cdots & \cdots & a_{-2} & a_{-1} & a_{0}
\end{array}\right], a_{i} \in \mathbb{C}
$$

$T_{N}(\boldsymbol{a})$ finitely banded if $a_{i}=0$ for $i \geqslant d_{1}+1$ and $i \leqslant-\left(d_{2}+1\right)$ for some $d_{1}, d_{2} \geqslant 0$.

Spectrum of random perturbation of Toeplitz matrices

$$
T_{N}(\boldsymbol{a})=\left[\begin{array}{cccccc}
a_{0} & a_{1} & a_{2} & \cdots & \cdots & a_{N-1} \\
a_{-1} & a_{0} & a_{1} & \ddots & & \vdots \\
a_{-2} & a_{-1} & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & a_{1} & a_{2} \\
\vdots & & \ddots & a_{-1} & a_{0} & a_{1} \\
a_{-(N-1)} & \cdots & \cdots & a_{-2} & a_{-1} & a_{0}
\end{array}\right], a_{i} \in \mathbb{C} .
$$

- $T_{N}(\boldsymbol{a})$ can be viewed as a finite dimensional version of an infinite dimensional matrix/operator $T(\boldsymbol{a})$.

$$
T_{N}(\boldsymbol{a})=\mathbf{1}_{[1, N] \cap \mathbb{N}} T(\boldsymbol{a}) \mathbf{1}_{[1, N] \cap \mathbb{N}}
$$

- The symbol of $T(\boldsymbol{a}) / T_{N}(\boldsymbol{a})$ is \boldsymbol{a}.

$$
\boldsymbol{a}(\xi):=\sum_{\substack{k=-\infty \\ \text { A. Basak }}}^{\infty} a_{k} \xi^{k}, \quad \xi \in \mathbb{S}^{1}
$$

Spectrum of random perturbation of Toeplitz matrices

- If $T(\boldsymbol{a})$ (or equivalently $T_{N}(\boldsymbol{a})$) if finitely banded then \boldsymbol{a} is a Laurent polynomial.

$$
\boldsymbol{a}(\xi)=\sum_{k=-d_{2}}^{d_{1}} a_{k} \xi^{k} .
$$

Examples.
■ $T_{N}(\boldsymbol{a})=J_{N} \Leftrightarrow \boldsymbol{a}(\xi)=\xi$.
■ $T_{N}(\boldsymbol{a})=J_{N}+J_{N}^{2} \Leftrightarrow \boldsymbol{a}(\xi)=\xi+\xi^{2}$.
■ $T_{N}(\boldsymbol{a})=2\left(J_{N}^{3}\right)^{\star}-\left(J_{N}^{2}\right)^{\star}+2 \iota J_{N}^{\star}-4 J_{N}-2 \iota J_{N}^{2} \Leftrightarrow \boldsymbol{a}(\xi)=$ $2 \xi^{-3}-\xi^{-2}+2 \iota \xi^{-1}-4 \xi-2 \iota \xi^{2}$.

Limit of the bulk of the spectrum

Theorem (B., Paquette, Zeitouni '19, '20)

For any $\gamma>\frac{1}{2}$, if E_{N} satisfies Assumption (A) then the empirical distribution of the eigenvalues of $T_{N}+N^{-\gamma} E_{N}$ converges weakly, in probability, to the law of $a(U)$ where $U \sim \operatorname{Unif}\left(\mathbb{S}^{1}\right)$.
(also follows from [O'Rourke, Wood '22])
For any $f \in C_{b}(\mathbb{C})$

$$
\frac{1}{N} \sum_{i=1}^{N} f\left(\lambda_{i}\right) \rightarrow \frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(\boldsymbol{a}\left(e^{\mathrm{i} \theta}\right)\right) d \theta, \quad \text { in probability. }
$$

Limit of the bulk of the spectrum

Theorem (B., Paquette, Zeitouni '19, '20)

For any $\gamma>\frac{1}{2}$, if E_{N} satisfies Assumption (A) then the empirical distribution of the eigenvalues of $T_{N}+N^{-\gamma} E_{N}$ converges weakly, in probability, to the law of $a(U)$ where $U \sim \operatorname{Unif}\left(\mathbb{S}^{1}\right)$.

Examples.

$$
\begin{gathered}
T_{N}=J_{N}, \boldsymbol{a}(\xi)=\xi . L_{N} \Rightarrow \text { law of } U, \text { where } U \sim \operatorname{Unif}\left(\mathbb{S}^{1}\right) . \\
T_{N}=J_{N}+J_{N}^{2}, \boldsymbol{a}(\xi)=\xi+\xi^{2} . L_{N} \Rightarrow \text { law of } U+U^{2}
\end{gathered}
$$

Limit of the bulk of the spectrum

Theorem (B., Paquette, Zeitouni '19, '20)

For any $\gamma>\frac{1}{2}$, if E_{N} satisfies Assumption (A) then the empirical distribution of the eigenvalues of $T_{N}+N^{-\gamma} E_{N}$ converges weakly, in probability, to the law of $a(U)$ where $U \sim \operatorname{Unif}\left(\mathbb{S}^{1}\right)$.

Assumption (A)
(1)

$$
\mathbb{E}\left[\left\|E_{N}\right\|_{\mathrm{HS}}^{2}\right]=\mathbb{E}\left[\sum_{i, j}\left|e_{i, j}\right|^{2}\right]=O\left(N^{2}\right)
$$

(2) (Technical condition) For every $\alpha>0 \exists \beta \in(0, \infty)$, such that for any M_{N} with $\left\|M_{N}\right\|=O\left(N^{\alpha}\right)$,

$$
\mathbb{P}\left(s_{\min }\left(M_{N}+E_{N}\right) \leqslant N^{-\beta}\right)=o(1)
$$

Matrices satisfying Assumption (A)

$■$ The entries of E_{N} are i.i.d. with finite second moment. follows from [Tao-Vu '08]
■ $E_{N}=\sqrt{N} U_{N}$, where U_{N} is Haar Unitary. follows from [Rudelson-Vershynin '14]
■ The entries of E_{N} are independent, satisfy a uniform anti-concentration bound near zero, and have uniform lower bound on the truncated variance.
[Bordenave-Chafaï '12]

- The entries of E_{N} have an inhomogeneous variance profile satisfying some appropriate assumptions.
[Cook '16]
- E_{N} can also be sparse random matrix.
[Tao-Vu '08]

Regions of no outliers

Theorem (B., Zeitouni '20)

The entries of E_{N} are independent entries with zero mean and unit variance. Then for any $\gamma>\frac{1}{2}$, with probability $\rightarrow 1$, there are no outliers in any open set

$$
U \subsetneq \mathcal{R}_{0}:=\left\{z \in \mathbb{C} \backslash \boldsymbol{a}\left(\mathbb{S}^{1}\right): \operatorname{wind}_{\boldsymbol{a}}(z)=0\right\} .
$$

Limit of outliers

Theorem (B., Zeitouni '20)

Additionally assume that E_{N} be a random matrix with i.i.d. entries having zero mean and unit variance and satisfying some anti-concentration bound (e.g. bounded density). Then for any $\gamma>\frac{1}{2}$, the point processes induced by the outlier eigenvalues converge to the zero set of some non-universal (w.r.t. the distribution of the entries of E_{N}) random analytic function.

Definition of the limiting random analytic function involves skew semistandard Young Tableaux
$T_{N}=J_{N}$, entries of E_{N} are standard complex Gaussian
Limiting random analytic function is a hyperbolic Gaussian analytic function:

$$
F(z)=\sum_{\ell=0}^{\infty} g_{\ell} z^{\ell} \sqrt{\ell+1}
$$

$\left\{g_{\ell}\right\}$ i.i.d. standard complex Gaussian

Limit of outliers: The Limaçon

$T_{N}=J_{N}+J_{N}^{2}$, entries of E_{N} are standard complex Gaussian

Figure: Three regions: \mathcal{R}_{2} in black, \mathcal{R}_{1} in grey, and \mathcal{R}_{0} in white. For $z \in \mathcal{R}_{\ell}$ (i) $\operatorname{wind}(z)=\ell$ and (ii) ℓ roots of the equation $\boldsymbol{a}_{z}(\xi):=\xi+\xi^{2}-z=0$ that are less than one in moduli.

Limit of outliers: The Limaçon

$T_{N}=J_{N}+J_{N}^{2}$, entries of E_{N} are standard complex Gaussian
For $z \in \mathcal{R}_{1}$, the limiting random function is given by

$$
F(z)=\sum_{\ell=0}^{\infty} g_{\ell} \xi_{-}(z)^{\ell} \sqrt{\ell+1}
$$

$\left\{g_{\ell}\right\}$ i.i.d. complex standard Gaussian

$$
\xi_{ \pm}(z) \text { are the roots } \boldsymbol{a}_{\xi}(z)=0 \text { with }\left|\xi_{-}(z)\right|<\left|\xi_{+}(z)\right|
$$

For $z \in \mathcal{R}_{2}$, the limiting random function is given by

$$
\begin{gathered}
F(z)=\sum_{i<j, k<\ell} C_{i, j, k, \ell}(z) \cdot\left(g_{i, k} g_{j, \ell}-g_{i, \ell} g_{j, k}\right) \\
\left\{g_{\ell, \ell^{\prime}}\right\} \text { i.i.d. complex standard Gaussian }
\end{gathered}
$$

Localization/delocalization of eigenvectors

Figure: Moduli of the entries of an eigenvector of $J_{N}+N^{-\gamma} E_{N}: N=1000$; top left: $\gamma=2$, top right: $\gamma=1.5$, bottom: $\gamma=1$.

Localization/delocalization of eigenvectors

Figure: Moduli of the entries of an eigenvector of $J_{N}+N^{-\gamma} E_{N}: N=1000$; top left: $\gamma=0.9$, top right: $\gamma=0.75$, bottom: $\gamma=0.4$.

Localization of eigenvectors for $\gamma>1$

Figure: Eigenvectors (left panel) and eigenvalues (right panel) of $J_{N}+J_{N}^{2}+N^{-\gamma} E_{N}$ for $N=4000, \gamma=1.2$. Plotted are the moduli of the entries of the eigenvector that corresponds to the eigenvalue marked with a red \times.

Localization of eigenvectors for $\gamma>1$

Figure: Eigenvectors (left panel) and eigenvalues (right panel) of $J_{N}+J_{N}^{2}+N^{-\gamma} E_{N}$ for $N=4000, \gamma=1.2$. Plotted are the moduli of the entries of the eigenvector that corresponds to the eigenvalue marked with a red \times.

Localization of eigenvectors for $\gamma>1$

Theorem (B., Vogel, Zeitouni '23)

For most (right)-eigenvectors v, with probability $\rightarrow 1$, as $N \rightarrow \infty$, (under some assumptions on E_{N}) the followings hold:

- Localization at scale $N / \log N$: For any $\ell \in[1, N] \cap \mathbb{Z}$

$$
\|v\|_{\ell^{2}([1, N-\ell])} \wedge\|v\|_{\ell^{2}([\ell, N])} \lesssim \exp (-c \ell \log N / N)+N^{-c^{\prime}}
$$

■ Eigenvectors spread out at scale $N / \log N$:

$$
\begin{gathered}
|\operatorname{Supp}(v)| \gtrsim N / \log N \\
|\operatorname{Supp}(v)|:=\min \left\{|I|:\|v\|_{\ell^{2}(I)} \gtrsim 1\right\}
\end{gathered}
$$

Delocalization of eigenvectors for $\gamma<1$

We expect a long-range correlation and some form of quantum unique ergodicity.

Work in progress with Vogel and Zeitouni.

Figure: $T_{N}=J_{N}+J_{N}^{2}, N=4000, \gamma=0.8$.

Proof ideas for the LSD: Use of log-potential

For a probability measure μ on \mathbb{C}, such that $\log (\cdot)$ integrates near infinity, define its log-potential as follows:

$$
\mathcal{L}_{\mu}(z):=\int \log |z-x| d \mu(x), \quad z \in \mathbb{C}
$$

Facts:
■ If $\mathcal{L}_{\mu}(z)=\mathcal{L}_{\nu}(z)$ for Lebesgue a.e. $z \in \mathbb{C}$ then $\mu=\nu$.

- If $\left\{\mu_{N}\right\}$ is a tight sequence of (random) probability measures such that $\mathcal{L}_{\mu_{N}}(z) \rightarrow \mathcal{L}_{\mu}(z)$, for Lebesgue a.e. $z \in \mathbb{C}$, in probability, for some probability measure $\mu \in \mathbb{C}$, then $\mu_{N} \Rightarrow \mu$, in probability.

$$
\int f d \mu_{N} \rightarrow \int f d \mu, \text { as } N \rightarrow \infty, \text { in probability, } f \in C_{b}(\mathbb{C})
$$

Facts:

$$
\begin{aligned}
& L_{N}^{A}:=\frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i}\left(A_{N}\right)} \\
& \mathcal{L}_{L_{N}^{A}}(z)=\frac{1}{N} \sum_{i=1}^{N} \log \left|z-\lambda_{i}\left(A_{N}\right)\right|=\frac{1}{N} \sum_{i=1}^{N} \log \left|\lambda_{i}\left(A_{N}-z \operatorname{Id}_{N}\right)\right| \\
&=\frac{1}{N} \log \left|\prod_{i=1}^{N} \lambda_{i}\left(A_{N}-z \operatorname{Id}_{N}\right)\right| \\
&=\frac{1}{N} \log \left|\operatorname{det}\left(A_{N}-z \operatorname{Id}_{N}\right)\right|
\end{aligned}
$$

Proof ideas for the LSD: Use of log-potential

For a probability measure μ on \mathbb{C}, such that $\log (\cdot)$ integrates near infinity, define its log-potential as follows:

$$
\mathcal{L}_{\mu}(z):=\int \log |z-x| d \mu(x), \quad z \in \mathbb{C}
$$

Facts:
■ If $\mathcal{L}_{\mu}(z)=\mathcal{L}_{\nu}(z)$ for Lebesgue a.e. $z \in \mathbb{C}$ then $\mu=\nu$.
■ If $\left\{\mu_{N}\right\}$ is a tight sequence of (random) probability measures such that $\mathcal{L}_{\mu_{N}}(z) \rightarrow \mathcal{L}_{\mu}(z)$, for Lebesgue a.e. $z \in \mathbb{C}$, in probability, for some probability measure $\mu \in \mathbb{C}$, then $\mu_{N} \Rightarrow \mu$, in probability.

$$
\mathcal{L}_{L_{N}^{A}}(z)=\frac{1}{N} \log \left|\operatorname{det}\left(A_{N}-z \operatorname{Id}_{N}\right)\right|
$$

Proof ideas (continued)

Identify the log-potential of the limit: $\mathcal{L}_{\boldsymbol{a}(U)}(z)$

- Recall

$$
\boldsymbol{a}(\xi)=\sum_{\ell=-d_{2}}^{d_{1}} a_{\ell} \xi^{\ell}
$$

- Fix $z \in \mathbb{C}$. Let $\xi_{1}(z), \ldots, \xi_{d}(z)$ be the roots of the polynomial $(\boldsymbol{a}(\xi)-z) \cdot \xi^{d_{2}}$. Here $d:=d_{1}+d_{2}$.
- Therefore

$$
(\boldsymbol{a}(\xi)-z) \cdot \xi^{d_{2}}=a_{d_{1}} \cdot \prod_{\ell=1}^{d}\left(\xi-\xi_{\ell}(z)\right)
$$

Proof ideas (continued)

Identify the log-potential of the limit: $\mathcal{L}_{\boldsymbol{a}(U)}(z)$

$$
\begin{aligned}
& \mathcal{L}_{\boldsymbol{a}(U)}(z)=\int_{\mathbb{S}^{1}} \log |\boldsymbol{a}(\xi)-z| d \xi=\int_{\mathbb{S}^{1}} \log \left|(\boldsymbol{a}(\xi)-z) \cdot \xi^{d_{2}}\right| d \xi \\
&=\log \left|a_{d_{1}}\right|+\sum_{\ell=1}^{d} \int_{\mathbb{S}^{1}} \log \left|\xi-\xi_{\ell}(z)\right| d \xi \\
&=\log \left|a_{d_{1}}\right|+\sum_{\ell=1}^{d} \log _{+}\left|\xi_{\ell}(z)\right|
\end{aligned}
$$

- The form of the limit depends on the number of the roots that are greater than one in moduli.

Proof ideas for the LSD: The limaçon

Back to the example: $\boldsymbol{a}(\xi)=\xi+\xi^{2}$.

Figure: Three regions: \mathcal{R}_{2} in black, \mathcal{R}_{1} in grey, and \mathcal{R}_{0} in white. For $z \in \mathcal{R}_{\ell}$ (i) $\operatorname{wind}(z)=\ell$ and (ii) ℓ roots of the equation $\boldsymbol{a}_{z}(\xi):=\xi+\xi^{2}-z=0$ that are less than one in moduli.

Proof ideas (contd.)

Need to show

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \log \left|\operatorname{det}\left(T_{N}+N^{-\gamma} E_{N}-z \operatorname{Id}_{N}\right)\right|
$$

$$
= \begin{cases}0 & \text { if } z \in \mathcal{R}_{2} \\ \log \left|\xi_{1}(z)\right| & \text { if } z \in \mathcal{R}_{1} \\ \log \left|\xi_{1}(z)\right|+\log \left|\xi_{2}(z)\right| & \text { if } z \in \mathcal{R}_{0}\end{cases}
$$

$$
\left|\xi_{2}(z)\right| \leqslant\left|\xi_{1}(z)\right|
$$

Proof ideas (contd.)

Need to show

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{1}{N} \log \left|\operatorname{det}\left(T_{N}+N^{-\gamma} E_{N}-z \operatorname{Id}_{N}\right)\right| \\
&= \begin{cases}0 & \text { if } z \in \mathcal{R}_{2} \\
\log \left|\xi_{1}(z)\right| & \text { if } z \in \mathcal{R}_{1} \\
\log \left|\xi_{1}(z)\right|+\log \left|\xi_{2}(z)\right| & \text { if } z \in \mathcal{R}_{0}\end{cases}
\end{aligned}
$$

Idea: Expand the determinant

$$
=\sum_{\substack{X, Y \subset[N] \\|X|=|Y|}}(\pm) \cdot \operatorname{det}\left(T_{N}+N^{-\gamma} E_{N}-z \operatorname{Id}_{N}\right)
$$

Proof ideas (contd.)

Need to show

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{1}{N} \log \left|\operatorname{det}\left(T_{N}+N^{-\gamma} E_{N}-z \operatorname{Id}_{N}\right)\right| \\
&= \begin{cases}0 & \text { if } z \in \mathcal{R}_{2} \\
\log \left|\xi_{1}(z)\right| & \text { if } z \in \mathcal{R}_{1} \\
\log \left|\xi_{1}(z)\right|+\log \left|\xi_{2}(z)\right| & \text { if } z \in \mathcal{R}_{0}\end{cases}
\end{aligned}
$$

Idea: Expand the determinant and find the dominant term

$$
=\sum_{\substack{X, Y \subset[N] \\|X|=|Y|}}(\pm) \cdot \operatorname{det}\left(T_{N}+N^{-\gamma} E_{N}-z \operatorname{Id}_{N}\right)
$$

Dominant term: test cases

Need to show

$$
\frac{1}{N} \log \left|\operatorname{det}\left(T_{N}+N^{-\gamma} E_{N}-z \operatorname{Id}_{N}\right)\right| \rightarrow \log \left|\xi_{1}(z)\right|+\log \left|\xi_{2}(z)\right|, \quad z \in \mathcal{R}_{0}
$$

$$
\begin{aligned}
& \frac{1}{N} \log \left\lvert\, \operatorname{det}\left(\left[\begin{array}{cccccc}
-z & 1 & 1 & & & \\
& -z & 1 & 1 & & \\
& & \ddots & \ddots & \ddots & \\
& & & -z & 1 & 1 \\
& & & & -z & 1 \\
& & =\log |z|=\log \left|\xi_{1}(z)\right|+\log \left|\xi_{2}(z)\right| .
\end{array}\right.\right.\right. \\
&
\end{aligned}
$$

Dominant term: test cases

Need to show

$$
\begin{gathered}
\frac{1}{N} \log \left|\operatorname{det}\left(T_{N}+N^{-\gamma} E_{N}-z \operatorname{Id}_{N}\right)\right| \rightarrow 0, \quad z \in \mathcal{R}_{2} \\
\frac{1}{N} \log \left|\operatorname{det}\left(\left[\begin{array}{rrrrrrr}
-z & 1 & 1 & & & & \\
0 & -z & 1 & 1 & & & \\
\vdots & 0 & \ddots & \ddots & \ddots & & \\
\vdots & \vdots & & \ddots & \ddots & \ddots & \\
\vdots & \vdots & & & -z & 1 & 1 \\
0 & 0 & \cdots & \cdots & 0 & -z & 1 \\
0 & 0 & \cdots & \cdots & \cdots & 0 & -z
\end{array}\right]\right)\right|
\end{gathered}
$$

Dominant term: test cases

Need to show

$$
\begin{aligned}
& \frac{1}{N} \log \left|\operatorname{det}\left(T_{N}+N^{-\gamma} E_{N}-z \operatorname{Id}_{N}\right)\right| \rightarrow \log \left|\xi_{1}(z)\right|, \quad z \in \mathcal{R}_{1} \\
& \frac{1}{N} \log \left|\operatorname{det}\left(\left[\begin{array}{cccccc}
-z & 1 & 1 & & & \\
0 & -z & 1 & 1 & & \\
\vdots & & \ddots & \ddots & \ddots & \\
\vdots & & & -z & 1 & 1 \\
\vdots & & & & -z & 1 \\
0 & \cdots & \cdots & \cdots & 0 & -z
\end{array}\right]\right)\right|
\end{aligned}
$$

Proof ideas (contd.)

Formally

$$
\begin{aligned}
& \operatorname{det}\left(T_{N}+N^{-\gamma} E_{N}-z \operatorname{Id}_{N}\right) \\
= & \sum_{\substack{X, Y \subset[N] \\
|X|=|Y|}}(\pm) \cdot \operatorname{det}\left(\left(T_{N}-z \operatorname{Id}_{N}\right)[X ; Y]\right) \cdot \operatorname{det}\left(N^{-\gamma} E_{N}\left[X^{c} ; Y^{c}\right]\right) \\
= & \sum_{k=0}^{N} P_{k}(z),
\end{aligned}
$$

where $P_{k}(z)$ is the homogeneous polynomial of degree k in the expansion of the determinant in the entries of E_{N}.

Proof ideas (contd.)

Formally
■ For $z \in \mathcal{R}_{i}, i=0,1,2$

$$
\begin{equation*}
\sum_{k \neq i} P_{k}(z)=o\left(P_{i}(z)\right) \tag{a}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{i}(z) \asymp \log _{+}\left|\xi_{1}(z)\right|+\log _{+}\left|\xi_{2}(z)\right| . \tag{b}
\end{equation*}
$$

Proof ideas (contd.)

- To prove (a) compute high moments.
- To prove (b) one needs certain anti-concentration bounds.
- Assume the entries of E_{N} satisfy required anti-concentration bounds. Prove the convergence of the log-potentials.
■ Show separately that the specific distribution of the entries of E_{N} do not affect the limiting spectral distribution (replacement principle).

Thank you!

