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The pseudostress-velocity formulation [3, 5] of the stationary Stokes equations

−∆u+∇p = f and div u = 0 in Ω (1)

with Dirichlet boundary conditions along the polygonal boundary ∂Ω allows
the stresses-like variables σ in Raviart-Thomas mixed finite element spaces [2]
RTk(T ) with respect to a regular triangulation T , and hence allows for higher
flexibility in arbitrary polynomial degrees.

The weak form of problem (1) is formally equivalent and reads: Given f ∈
L2(Ω;R2) and g ∈ H1(Ω;R2) ∩ H1(E(∂Ω);R2) with

∫
∂Ω
g · ν ds = 0 seek σ ∈

H(div,Ω;R2×2)/R and u ∈ L2(Ω;R2) such that∫
Ω

dev σ : τ dx+

∫
Ω

u · div τ dx =

∫
∂Ω

g · τ ν ds,∫
Ω

v · div σ dx = −
∫

Ω

f · v dx
(2)

for all (τ, v) ∈ H(div,Ω;R2×2)/R× L2(Ω;R2), where the deviatoric part of the
tensor σ reads dev σ := σ−1/2 tr(σ)I2×2. The discrete formulation of (2) seeks
σPS ∈ PS(T ) := RTk(T ) ∩H(div,Ω;R2×2)/R and uPS ∈ P0(T`;R2) such that∫

Ω

dev σPS : τPS dx+

∫
Ω

div τPS · uPS dx =

∫
∂Ω

g · τPSν ds∫
Ω

div σPS · vPS dx = −
∫

Ω

f · vPS dx

for all (τPS, vPS) ∈ PS(T )× Pk(T ;R2).
The reliability and efficiency up to data oscillations of the explicit residual-

based error estimator η` have been established in [5]. The contributions on each
triangle T with edges E ∈ E(T ) and tangents τE and jumps [·]E read

η2(T ) := osc2(f, T ) + |T | ‖curl(dev σPS)‖2L2(T )

+ |T |1/2
∑

E∈E(T )

‖[dev σPS]EτE‖2L2(E).
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Figure 1: Convergence history for uniform and adaptive mesh-refinement in the
L-shaped domain example and mesh generated by Apsfem.

This gives rise to run the following adaptive algorithm Apsfem with the
steps Solve, Estimate, Mark, Refine, in each loop iteration.

Input: Initial triangulation T0, bulk parameter 0 < θ < θ0 � 1

Loop: For ` = 0, 1, 2, . . .

Solve. Compute (u`, σ`) with respect to the triangulation T`
Estimate. Compute the piecewise contributions of η`

Mark. Mark minimal subset M` ⊂ T` such that

θη2
` ≤ η2

` (M`) :=
∑

T∈M`

η2
` (T ).

Refine. Refine M` in T` with newest vertex bisection, generate T`+1

Output: Sequences (T`)` and (u`, σ`)`

The definition of quasi-optimal convergence is based on the concept of ap-
proximation classes. For s > 0, let

As :=
{

(σ, f, g) ∈H(div,Ω;R2×2)/R× L2(Ω;R2)

×
(
H1(Ω;R2) ∩H1(E(∂Ω);R2)

) ∣∣ |(σ, f, g)|As
<∞

}
with |(σ, f, g)|As

:=

sup
N∈N

Ns inf
|T |−|T0|≤N

(
‖dev(σ − σT )‖2L2(Ω) + osc2(f, T ) + osc2

(∂g
∂s
, E(∂Ω)

))1/2

.

In the infimum, T runs through all admissible triangulations (with respective
discrete solutions σT ) that are refined from T0 by newest vertex bisection of
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[1, 7] and that satisfy |T | − |T0| ≤ N . The main result relies on a novel ob-
servation from ongoing work of Carstensen, Kim, and Park on the equivalence
with nonconforming schemes in the spirit of [6] and is therefore restricted to the
lowest-order Raviart-Thomas finite element functions. The main theorem states
quasi-optimal convergence in the following sense. For any sufficienty small bulk
parameter 0 < θ < θ0 and (σ, f, g) ∈ As, Apsfem generates sequences of trian-
gulations (T`)` and discrete solutions (u`, σ`)` of optimal rate of convergence in
the sense that

(|T`| − |T0|)s
(
‖dev(σ − σ`)‖2L2(Ω) + osc2(f, T`) + osc2(∂g/∂s, E`(∂Ω))

)1/2

≤ Copt |(σ, f, g)|As
.

The main ingredients of the proof are the quasi-orthogonality, which leads
to a contraction of some linear combination of error, estimator, and data oscil-
lations, and the discrete reliability. Those are established for the lowest-order
case.
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