Quasi optimal adaptive pseudostress approximation of the Stokes equations joint work with Carsten Carstensen and Mira Schedensack

Dietmar Gallistl (HU Berlin)

March 2012

The pseudostress-velocity formulation [3, 5] of the stationary Stokes equations

$$-\Delta u + \nabla p = f \quad \text{and} \quad \operatorname{div} u = 0 \quad \text{in } \Omega \tag{1}$$

with Dirichlet boundary conditions along the polygonal boundary $\partial\Omega$ allows the stresses-like variables σ in Raviart-Thomas mixed finite element spaces [2] $\operatorname{RT}_k(\mathcal{T})$ with respect to a regular triangulation \mathcal{T} , and hence allows for higher flexibility in arbitrary polynomial degrees.

The weak form of problem (1) is formally equivalent and reads: Given $f \in L^2(\Omega; \mathbb{R}^2)$ and $g \in H^1(\Omega; \mathbb{R}^2) \cap H^1(\mathcal{E}(\partial\Omega); \mathbb{R}^2)$ with $\int_{\partial\Omega} g \cdot \nu \, ds = 0$ seek $\sigma \in H(\operatorname{div}, \Omega; \mathbb{R}^{2\times 2})/\mathbb{R}$ and $u \in L^2(\Omega; \mathbb{R}^2)$ such that

$$\int_{\Omega} \operatorname{dev} \sigma : \tau \, dx + \int_{\Omega} u \cdot \operatorname{div} \tau \, dx = \int_{\partial \Omega} g \cdot \tau \, \nu \, ds,$$

$$\int_{\Omega} v \cdot \operatorname{div} \sigma \, dx = -\int_{\Omega} f \cdot v \, dx$$
(2)

for all $(\tau, v) \in H(\operatorname{div}, \Omega; \mathbb{R}^{2 \times 2})/\mathbb{R} \times L^2(\Omega; \mathbb{R}^2)$, where the deviatoric part of the tensor σ reads dev $\sigma := \sigma - 1/2 \operatorname{tr}(\sigma) I_{2 \times 2}$. The discrete formulation of (2) seeks $\sigma_{\mathrm{PS}} \in \operatorname{PS}(\mathcal{T}) := \operatorname{RT}_k(\mathcal{T}) \cap H(\operatorname{div}, \Omega; \mathbb{R}^{2 \times 2})/\mathbb{R}$ and $u_{\mathrm{PS}} \in P_0(\mathcal{T}_\ell; \mathbb{R}^2)$ such that

$$\int_{\Omega} \operatorname{dev} \sigma_{\mathrm{PS}} : \tau_{\mathrm{PS}} \, dx + \int_{\Omega} \operatorname{div} \tau_{\mathrm{PS}} \cdot u_{\mathrm{PS}} \, dx = \int_{\partial \Omega} g \cdot \tau_{\mathrm{PS}} \nu \, ds$$
$$\int_{\Omega} \operatorname{div} \sigma_{\mathrm{PS}} \cdot v_{\mathrm{PS}} \, dx = -\int_{\Omega} f \cdot v_{\mathrm{PS}} \, dx$$

for all $(\tau_{\rm PS}, v_{\rm PS}) \in \mathrm{PS}(\mathcal{T}) \times P_k(\mathcal{T}; \mathbb{R}^2).$

The reliability and efficiency up to data oscillations of the explicit residualbased error estimator η_{ℓ} have been established in [5]. The contributions on each triangle T with edges $E \in \mathcal{E}(T)$ and tangents τ_E and jumps $[\cdot]_E$ read

$$\eta^{2}(T) := \operatorname{osc}^{2}(f, T) + |T| \|\operatorname{curl}(\operatorname{dev} \sigma_{\operatorname{PS}})\|_{L^{2}(T)}^{2} + |T|^{1/2} \sum_{E \in \mathcal{E}(T)} \|[\operatorname{dev} \sigma_{\operatorname{PS}}]_{E} \tau_{E}\|_{L^{2}(E)}^{2}.$$

Figure 1: Convergence history for uniform and adaptive mesh-refinement in the L-shaped domain example and mesh generated by APSFEM.

This gives rise to run the following adaptive algorithm APSFEM with the steps Solve, Estimate, Mark, Refine, in each loop iteration.

Input: Initial triangulation \mathcal{T}_0 , bulk parameter $0 < \theta < \theta_0 \ll 1$

Loop: For $\ell = 0, 1, 2, ...$

Solve. Compute $(u_{\ell}, \sigma_{\ell})$ with respect to the triangulation \mathcal{T}_{ℓ} **Estimate.** Compute the piecewise contributions of η_{ℓ}

Mark. Mark minimal subset $\mathcal{M}_{\ell} \subset \mathcal{T}_{\ell}$ such that

(

$$\partial \eta_{\ell}^2 \leq \eta_{\ell}^2 \left(\mathcal{M}_{\ell} \right) := \sum_{T \in \mathcal{M}_{\ell}} \eta_{\ell}^2(T).$$

Refine. Refine \mathcal{M}_{ℓ} in \mathcal{T}_{ℓ} with newest vertex bisection, generate $\mathcal{T}_{\ell+1}$

Output: Sequences $(\mathcal{T}_{\ell})_{\ell}$ and $(u_{\ell}, \sigma_{\ell})_{\ell}$

The definition of quasi-optimal convergence is based on the concept of approximation classes. For s > 0, let

$$\begin{aligned} \mathcal{A}_s &:= \left\{ (\sigma, f, g) \in H(\operatorname{div}, \Omega; \mathbb{R}^{2 \times 2}) / \mathbb{R} \times L^2(\Omega; \mathbb{R}^2) \\ &\times \left(H^1(\Omega; \mathbb{R}^2) \cap H^1(\mathcal{E}(\partial\Omega); \mathbb{R}^2) \right) \left| \left| (\sigma, f, g) \right|_{\mathcal{A}_s} < \infty \right\} \end{aligned}$$

with $|(\sigma, f, g)|_{\mathcal{A}_s} :=$

$$\sup_{N\in\mathbb{N}} N^s \inf_{|\mathcal{T}|-|\mathcal{T}_0|\leq N} \left(\|\operatorname{dev}(\sigma-\sigma_{\mathcal{T}})\|_{L^2(\Omega)}^2 + \operatorname{osc}^2(f,\mathcal{T}) + \operatorname{osc}^2\left(\frac{\partial g}{\partial s},\mathcal{E}(\partial\Omega)\right) \right)^{1/2}.$$

In the infimum, \mathcal{T} runs through all admissible triangulations (with respective discrete solutions $\sigma_{\mathcal{T}}$) that are refined from \mathcal{T}_0 by newest vertex bisection of

[1, 7] and that satisfy $|\mathcal{T}| - |\mathcal{T}_0| \leq N$. The main result relies on a novel observation from ongoing work of Carstensen, Kim, and Park on the equivalence with nonconforming schemes in the spirit of [6] and is therefore restricted to the lowest-order Raviart-Thomas finite element functions. The main theorem states quasi-optimal convergence in the following sense. For any sufficiently small bulk parameter $0 < \theta < \theta_0$ and $(\sigma, f, g) \in \mathcal{A}_s$, APSFEM generates sequences of triangulations $(\mathcal{T}_{\ell})_{\ell}$ and discrete solutions $(u_{\ell}, \sigma_{\ell})_{\ell}$ of optimal rate of convergence in the sense that

$$(|\mathcal{T}_{\ell}| - |\mathcal{T}_{0}|)^{s} \Big(\|\operatorname{dev}(\sigma - \sigma_{\ell})\|_{L^{2}(\Omega)}^{2} + \operatorname{osc}^{2}(f, \mathcal{T}_{\ell}) + \operatorname{osc}^{2}(\partial g / \partial s, \mathcal{E}_{\ell}(\partial \Omega)) \Big)^{1/2} \leq C_{\operatorname{opt}} |(\sigma, f, g)|_{\mathcal{A}_{\alpha}}.$$

The main ingredients of the proof are the quasi-orthogonality, which leads to a contraction of some linear combination of error, estimator, and data oscillations, and the discrete reliability. Those are established for the lowest-order case.

References

- P. Binev, W. Dahmen, and R. DeVore, Adaptive finite element methods with convergence rates, Numer. Math. 97 (2004), 219–268.
- [2] S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics, 15 (2008), 3rd edition, New York, Berlin, Heidelberg.
- [3] Z. Cai, C. Tong, P.S. Vassilevski, and C. Wang, Mixed finite element methods for incompressible flow: Stationary Stokes equations, Numer. Methods Part. Diff. Eqs. 26 (2010), 957–978.
- [4] C. Carstensen, D. Gallistl, and M. Schedensack, *Quasi optimal adaptive pseudostress approximation of the Stokes equations*, In preparation (2012).
- [5] C. Carstensen, D. Kim, and E.J. Park, A Priori and A Posteriori Pseudostress-Velocity Mixed Finite Element Error Analysis for the Stokes Problem, SIAM J. Numer. Anal. 49 (2011), 2501–2523.
- [6] L.D. Marini, An inexpensive method for the evaluation of the solution of the lowest order Raviart-Thomas mixed method, SIAM J. Numer. Anal. 22 (1985), 493–496.
- [7] R. Stevenson, The completion of locally refined simplicial partitions created by bisection, Mathematics of Computation 77 (2008), 227–241.