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Various first-order finite element methods are known for the Poisson Model
Problem (1) and for linear elasticity (2). The recent publications [1] started
the comparison between some of these methods for the Poisson Model Problem,
which is completed in this presentation and its underlying paper [3].

Given a bounded polygonal Lipschitz domain Ω in the plane and data f ∈
L2(Ω), the Poisson model problem seeks the weak solution u ∈ H1(Ω) of

−∆u = f in Ω and u = 0 on ∂Ω. (1)

This presentation compares the error of three popular finite element meth-
ods (FEM) of Figure 1 for the numerical solution of (1), namely the conforming
Courant FEM (CFEM) [4], the nonconforming Crouzeix-Raviart FEM (CR-
NCFEM) [5], and the mixed Raviart-Thomas FEM (RT-MFEM) [7] with respec-
tive solutions uC, uCR, and (pRT, uRT) based on a shape-regular triangulation
T of Ω into triangles. The finite element space of CFEM reads P1(Ω) ∩ C0(Ω)

Figure 1: CFEM (left), CR-NCFEM (middle), RT-MFEM (right).

for C0(Ω) the continuous functions with zero boundary conditions. The finite
element space of Crouzeix-Raviart CR1

0(T ) consists of all piecewise affines which
are continuous at the midpoints of interior edges and vanish at the midpoints
of exterior edges. The Raviart-Thomas finite element space for the flux approx-
imation reads RT0(T ) := {pRT ∈ P1(T ,R2) ∩H(div,Ω) | ∀T ∈ T ∃ aT , bT , cT ∈
R : pRT|T (x) = (aT , bT ) + cTx}.

The comparison is stated in terms of A . B which abbreviates the existence
of some constant C which only depends on the minimal angle in T , but not on
the domain Ω and not on the mesh-size hT , such that A ≤ CB. The comparison
includes data oscillations, namely osc(f, T ) := ‖hT (f−Π0f)‖ where Π0 denotes
the L2 orthogonal projection onto the piecewise constants.

The comparison result for CFEM, CR-NCFEM and RT-MFEM states that
the errors of CFEM and CR-NCFEM are equivalent up to data oscillations, in
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the sense that

‖∇u−∇uC‖ . ‖∇u−∇NCuCR‖ . ‖∇u−∇uC‖+ osc(f, T ).

The error of RT-MFEM is superior in the sense that

‖∇u−∇NCuCR‖ . ‖hT f‖+ ‖∇u− pRT‖ . ‖∇u−∇NCuCR‖+ osc(f, T ),

but the converse is false, i.e.,

‖∇u−∇NCuCR‖ 6. ‖∇u− pRT‖+ osc(f, T ).

The proof of the inequalities is an example of the medius analysis for it com-
bines arguments of an a priori with those of an a posteriori error analysis. It
is emphasised that no regularity assumption is made and the results hold for
arbitrary coarse triangulations and not just in an asymptotic regime. The proof
of the superiority of RT-MFEM considers a sequence of domains, on which the
RT-MFEM has a steeper convergence rate than CR-NCFEM.

The results for the Poisson Model Problem can be generalised for the Navier-
Lamé equations from linear elasticity, which seek u ∈ H1

0 (Ω;R2) with

f + 2µ∆u+ (µ+ λ)∇(div u) = 0 in Ω. (2)

The compared FEMs are the conforming Courant FEM (CFEM) [2], the non-
conforming Kouhia-Stenberg FEM (KS-NCFEM) [6], and the nonconforming
Crouzeix-Raviart FEM (CR-NCFEM) [2] with respective solutions σC, σKS and
σCR. The finite element space of KS-NCFEM reads KS := (P1(T ) ∩ C0(Ω)) ×
CR1

0(T ). The discretisation of CFEM and KS-NCFEM is based on the bilinear
form

a(uKS, vKS) :=

∫
Ω

εNC(uKS) : CεNC(vKS) dx,

while the discretisation of CR-NCFEM involves the bilinear form

a(uCR, vCR) :=

∫
Ω

(
µDNCuCR : DNCvCR + (µ+ λ) divNC uCR divNC vCR

)
dx.

The comparison result for linear elasticity involves the Lamé modulus λ, which
effects the locking and the . notation means, that, in addition, the underlying
constants do not depend on the Lamé modulus λ. Then

‖σ − σC‖ . λ ‖σ − σKS‖ . λ
(
‖σ − σC‖+ osc(f, T )

)
and

‖σ − σKS‖+ osc(f, T ) ≈ ‖σ − σCR‖+ osc(f, T ).
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