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Abstract. Let Ω be a bounded, weakly pseudoconvex domain in C2, having smooth boundary.

A(Ω) is the algebra of all functions holomorphic in Ω and continuous upto the boundary. A smooth

curve C ⊂ ∂Ω is said to be complex-tangential if Tp(C) lies in the maximal complex subspace

of Tp(∂Ω) for each p ∈ C. We show that if C is complex-tangential and ∂Ω is of constant type

along C, then every compact subset of C is a peak-interpolation set for A(Ω). Furthermore, we

show that if ∂Ω is real-analytic and C is an arbitrary real-analytic, complex-tangential curve in

∂Ω, compact subsets of C are peak-interpolation sets for A(Ω).

1. Statement of the main result

Let Ω be a bounded domain in Cn, and let A(Ω) be the algebra of functions continuous on Ω
and holomorphic in Ω. Recall that a compact subset K ⊂ ∂Ω is called a peak-interpolation set
for A(Ω) if given any f ∈ C(K), f 6≡ 0, there exists a function F ∈ A(Ω) such that F |K = f and
|F (ζ)| < supK |f | for every ζ ∈ Ω \K.

We are interested in determining when a smooth submanifold M ⊂ ∂Ω is a peak-interpolation
set for A(Ω). When Ω is a strictly pseudoconvex domain having C2 boundary, and M is of class C2,
the situation is very well understood; refer to the works of Henkin & Tumanov [9], Nagel [10], and
Rudin [13]. In the strictly pseudoconvex setting, M is a peak-interpolation set for A(Ω) if and only
if M is complex-tangential, i.e. Tp(M) ⊂ Hp(∂Ω) ∀p ∈ M . Here, and in what follows, for any
submanifold M ⊆ ∂Ω, Tp(M) will denote the real tangent space to M at the point p ∈ M , while
Hp(∂Ω) will denote the maximal complex subspace of Tp(∂Ω).

Very little is known, however, when Ω is a weakly pseudoconvex of finite type (There are several
notions of type for domains in Cn, n ≥ 2, but they all coincide for pseudoconvex domains in C2.
See Section 2 below.). In view of a result by Henkin & Tumanov [9], or a similar result by Nagel
& Rudin [11], it is still necessary for M to be complex-tangential. However, showing even that any
smooth compact complex-tangential arc in ∂Ω is a peak-interpolation set for A(Ω), for a general
smoothly bounded weakly pseudoconvex domain of finite type, is a difficult problem. This is because
doing so would necessarily imply that every point in ∂Ω is a peak point for A(Ω). Whether or not
this is true for general pseudoconvex domains of finite type is an extremely difficult open question
in the theory of functions in several complex variables, but this fact is certainly known for smoothly
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bounded finite type domains in C2 – see [1] of Bedford & Fornaess, [6] of Fornaess & McNeal and [7]
of Fornaess & Sibony (and we will use this fact in one of our results below). In this paper we show,
among other things, that when Ω is a bounded domain in C2, ∂Ω is real-analytic and C ⊂ ∂Ω is a
real-analytic curve, it suffices that C be complex-tangential for every compact subset of C to be a
peak-interpolation set for A(Ω).

More precisely, our main result is as follows :

Theorem 1.1. Let Ω be a bounded pseudoconvex domain in C2 having smooth boundary, and let
C ⊂ ∂Ω be a smooth curve.

(i) Let ∂Ω be of class C∞ and Ω be of finite type. If C is complex-tangential, and if ∂Ω is of
constant type along C, then each compact subset of C is a peak-interpolation set for A(Ω).

(ii) Let Ω have real-analytic boundary, and let C ⊂ ∂Ω be a real-analytic, complex-tangential
curve. Then, each compact subset of C is a peak interpolation set for A(Ω).

Observe that in (ii) above, we do not assume that ∂Ω is of constant type along C.

2. Some notation and introductory remarks

We begin by defining the notion of type.

Definition 2.1. Let Ω ⊂ C2 be a bounded domain having a smooth boundary. Let p ∈ ∂Ω.
The type of p, denoted by τ(p), is the maximum order of contact that the germ of a 1-dimensional
complex variety through p can have with ∂Ω at p. The point p is said to be of finite type if τ(p) < ∞.
The domain Ω is said to be of finite type if there is an N ∈ N such that τ(p) ≤ N for each p ∈ ∂Ω.

Remark 2.2. Let Ω ⊂ C2 be a smoothly bounded pseudoconvex domain. Suppose p ∈ ∂Ω, τ(p) = N

and that there exist local holomorphic coordinates (U ; ζ1, ζ2), near p, with respect to which p = 0
and with respect to which (U ∩ ∂Ω) is defined by

(2.1) ρ(ζ) = A(ζ1) + O(v2
2 , |ζ1||v2|)− u2,

where ζk := uk + ivk, and A(ζ1) = O(|ζ1|2), then

(1) N is the leading order in ζ1 of A.
(2) Owing to the pseudoconvexity of Ω, N is an even number.

The above are the consequences of a computation on smoothly bounded pseudoconvex domains
in C2 of finite type at p ∈ ∂Ω, which is given in [8, Lecture 28]. Examining this calculation, we can
infer that

(3) Suppose Φ = (φ1, φ2) : (U, p) → (C2, 0) is a smooth change of coordinate – and write
ζj = φj(z1, z2), j = 1, 2 – such that ∂φj , j = 1, 2, vanishes to infinite order at p, and such
that (U ∩ ∂Ω) (with respect to these new coordinates) has a defining function of the form
(2.1). Then, conclusions (1) and (2) above continue to hold.
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We now present some notation. For a C2 function φ defined in some open set in Cn, we will adopt
the following notation

∂jφ =
∂φ

∂zj
, ∂jφ =

∂φ

∂zj
,

∂2
jkφ =

∂2φ

∂zj∂zk
, ∂2

jk
φ =

∂2φ

∂zj∂zk
, ∂2

jk
φ =

∂2φ

∂zj∂zk
.

And if F is a smooth function defined in a neighbourhood of 0 ∈ RN , we define (borrowing our
notation from [3])

In(F ) := the leading homogeneous polynomial in the Taylor expansion of F around 0,

ord(F ) := the degree of In(F ).

In what follows, B(p; r) will denote the open Euclidean ball in C2 centered at p ∈ C2 and having
radius r, while D(a; r) will denote the open disc in C centered at a ∈ C and having radius r. Several
parameters occur in our analysis and the independence of the quantitative estimates – occuring in
the results below – from these parameters will be of some concern. We will express such estimates
via the notation X . Y – meaning that there is a constant C > 0, independent of all parameters,
so that X ≤ CY .

A standard approach to proving that C ⊂ ∂Ω is a peak-interpolation set – C, ∂Ω smooth – which
is encountered in the papers [9] and [13], makes use of Bishop’s theorem [2], which we now state :

Theorem (Bishop). Let Ω be a bounded domain in Cn. A compact subset K ⊂ ∂Ω is a peak-
interpolation set for A(Ω) if and only if for every annihilating measure µ ⊥ A(Ω), |µ|(K) = 0.

In the above theorem, an annihilating measure refers to a regular, complex Borel measure
on Ω which, viewed as a bounded linear functional on C(Ω), annihilates A(Ω). A variation of the
aforementioned approach – needed in the proof of our main theorem – involves showing that if for
any p ∈ C there is a small neighbourhood Vp 3 p such that for each bump function χ ∈ C∞c (Vp; [0, 1])
with rm

∫
[χ−1{1}] ∩C being an open arc in C, there is a sequence of functions {hk}k∈N such that

: (i) {hk}k∈N ⊂ A(Ω) and is uniformly bounded on Ω, (ii) limk→∞ hk(z) = 0 ∀z ∈ Ω \ (C ∩Vp), and
(iii) limk→∞ hk(z) = χ(z) ∀z ∈ C ∩ Vp. We explain in the next section why Theorem 1.1-(i) follows
from the existence of such a {hk}k∈N.

The key step in our proof is to show that if C is as described in Theorem 1.1-(i), then for each
p ∈ C we can find a small neighbourhood Vp 3 p so that for any U b Vp, for which C ∩ U is an
arc, there is a smooth function G in Vp which is almost holomorphic with respect to C ∩ Vp and
peaks on C ∩ U . Further, one requires that this almost holomorphic peak function must approach
the value 1 at a controlled rate. We show that

(2.2) |G(z)| ≤ 1− Cdist[z,C ∩ Vp]2M ∀z ∈ Ω ∩ Vp.

Here, 2M represents the type of ∂Ω along C. The above result is strongly reminiscent of [12, Lemma
2.1] by Noell. In that lemma, if C – where C is not necessarily complex-tangential, but ∂Ω is of type
2M along C – has the property that at each p ∈ C there is a holomorphic function, smooth upto
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∂Ω, that peaks on a small closed sub-arc of C passing through p, then we can find a holomorphic
peak function, smooth upto ∂Ω, that satisfies the estimate (2.2). In our situation we do not, of
course, have holomorphic functions that peak locally along C. However, we can use some of Noell’s
ideas (which in turn rely on an estimate by Bloom [3]) and exploit the complex-tangency of C to
construct an almost-holomorphic local peak function that satisfies good estimates. This construction
is presented in Section 4.

We complete the proof of our main theorem in Section 5. Theorem 1.1-(i) follows from the
construction of the family {hk}k∈N described above. Each hk is, near C, a holomorphic correction
of the k-th power of G (G as introduced above). This correction is achieved by solving an appropriate
∂-equation in Ω, and the estimate (2.2) is used to show that hk satisfies the three properties listed
above. Theorem 1.1-(ii) follows from the fact that in the real-analytic setting ∂Ω is of constant type
along C except for a discrete set of points in C. Using Theorem 1.1-(i) and the fact that each point
in this discrete set is a peak point for A(Ω), we deduce Theorem 1.1-(ii).

3. A technical lemma

In this section, we present an abstract lemma that is instrumental to the proof of our main
theorem. We begin with a definition :

Definition 3.1. Given an open set V ⊂ RN , a bump function f in V is a function belonging to
C∞c (V ; [0, 1]) such that int[f−1{1}] 6= ∅.

Our technical lemma is as follows :

Lemma 3.2. Let Ω be a bounded domain in C2 having smooth boundary and let C be a smooth
curve in ∂Ω. Assume that for each p ∈ C, there exists a small neighbourhood Vp of p such that for
each bump function χ ∈ C∞c (Vp; [0, 1]), for which int[χ−1{1}] ∩C is an arc, we can find a sequence
of functions {hk}k∈N ⊂ A(Ω) (depending on χ) satisfying

(i) {hk}k∈N ⊂ A(Ω) is uniformly bounded on Ω.
(ii) limk→∞ hk(z) = 0 ∀z ∈ Ω \ (C ∩ Vp).
(iii) limk→∞ hk(z) = χ(z) ∀z ∈ C ∩ Vp.

Then, C is a countable union of peak-interpolation sets for A(Ω).

Remark 3.3. Before we prove the above lemma, we remark that a form of this lemma is true if
Ω is a bounded domain in Cn and C is replaced by M ⊂ ∂Ω – where M is a smooth submanifold
of ∂Ω ∩ U , U being an open subset of Cn. However, in order to be able to derive the conclusion
of the above lemma in this new setting with dimR(M) > 1, one would have to produce, for each
bump function χ ∈ C∞c (Vp; [0, 1]) (i.e. not merely for those χ for which int[χ−1{1}]∩M is nice), an
h ∈ A(Ω) that would satisfy conditions (i)-(iii) above. Being able to find such an h could be rather
difficult if dimR(M) > 1, because int[χ−1{1}] ∩M could be structurally quite complicated in this
situation. We add that if ∂Ω is strictly pseudoconvex, a less exacting form of the above lemma –
see, for instance, [9, Lemma 6] – suffices to infer peak-interpolation in higher dimensions.
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Proof. Fix p ∈ C. We may assume that C ∩ Vp is an arc in C. Let K be any compact subset of
C ∩ Vp and let µ be any annihilating measure. Then

K = (C ∩ Vp) \
∐
k∈N

Ak,

where each Ak is an open sub-arc of C ∩ Vp. If we could show that µ(Ak) = 0 for each k, and that
µ(C ∩ Vp) = 0 then, by the additivity of µ, we could conclude that µ(K) = 0.

Let C ⊂ C∩Vp be any closed sub-arc of C. Let {Dν}ν∈N be a shrinking family of compact subsets
of C2 such that

(a) Dν+1 ⊂ int(Dν),
(b) ∩ν∈NDν = C,
(c) Dν ⊆ Vp,
(d) C ∩Dν is an arc.

Let χν ∈ C∞c (Vp; [0, 1]) be a bump function with

χν |Dν+1 ≡ 1, supp χν ⊆ Dν .

Finally, define {hk,ν}k∈N to be the sequence of functions corresponding to χν given by the hypothesis
of this lemma.

Choose any µ ⊥ A(Ω). By the bounded convergence theorem

0 = lim
k→∞

∫
Ω

hk,νdµ =
∫

C∩Vp

χνdµ.

Another passage to the limit yields µ(C) = 0, and this is true for any µ ⊥ A(Ω). As µ is a regular
measure, this shows that µ(A) = 0 for any open sub-arc A ⊂ C ∩ Vp; in particular µ(C ∩ Vp) = 0.
Let Vp be any neighbourhood of p such that Vp b Vp. In view of our remarks in the first paragraph
of this proof we have just shown that for any µ ⊥ A(Ω), |µ|(C ∩ Vp) = 0. By Bishop’s theorem
C ∩ Vp is a peak-interpolation set for A(Ω). Letting p vary over a countable dense subset of C, we
have the desired result. �

4. Constructing an almost holomorphic function that peaks locally on C

Let p ∈ ∂Ω. In this section, we will study ∂Ω near p with respect to a convenient system of local
coordinates that are almost holomorphic with respect to C (near p) – where Ω and C are as in
Theorem 1.1-(i). We first prove the following lemma which asserts the existence of local coordinates
having the desired properties.

Lemma 4.1. Let Ω be a bounded domain in C2 having smooth boundary and let C ⊂ ∂Ω be a
complex-tangential curve. Let p ∈ C. There is a neighbourhood ω 3 p and a C∞-diffeomorphism
Φ : (ω, p) → (C2, 0) which is almost holomorphic with respect to (C ∩ ω) and so that, writing
(ζ1, ζ2) := Φ(z1, z2), we have

(1) Φ(C ∩ ω) ⊂ {(ζ1, ζ2) : im(ζ1) = ζ2 = 0}.
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(2) Φ(∂Ω ∩ ω) is defined by a defining function of the form

ρ(ζ) = A(ζ1) + B(ζ1)v2 + R(ζ1, v2)− u2,

where ζk := uk + ivk, k = 1, 2; A(ζ1) = O(|ζ1|2), R(ζ1, v2) = O(|v2|2), and

A(u1) = B(u1) = 0,

∇A(u1) = ∇B(u1) = 0,

for every u1 near 0.

Proof. Without loss of generality, we may let p be the origin, and assume that, near p, ∂Ω is defined
by

r(z1, z2) = h(z1, im(z2))− Re(z2),

where h(0) = 0 and ∇h(0) = 0.

Let ω be a neighbourhood of p = 0 and let M ⊂ ∂Ω be the smooth 2-manifold of ω formed
by the integral curves to the vector-field −J(∇r) passing through (C ∩ ω). M is totally real. Let
γ = (γ1, γ2) : (B(0; ε), (u1, u2) = 0) → ((M ∩ ω), p = 0) parametrize M near p = 0 in such a
way that Image(γ|{u2=const}) are all integral curves to the unit section of T (M) ∩H(∂Ω)|M, such
that Image(γ|{u2=0}) = (C ∩ ω) and such that ∂γ(0,0)

∂u2
= −J(∇r)(0, 0). Shrinking ω if necessary, we

construct a diffeomorphism Φ : (ω, p = 0) → (C2, 0) of class C∞, which is almost holomorphic with
respect to (M∩ ω), by defining

Φ−1(ζ1, ζ2) = (Γ1(ζ1,−iζ2), Γ2(ζ1,−iζ2)) := η(ζ1, ζ2),

where ζk := uk + ivk, k = 1, 2; and Γk is an almost holomorphic extension of γk, k = 1, 2. Notice
that by construction

Φ(M∩ ω) ⊂ {(ζ1, ζ2) : v1 = u2 = 0},(4.1)

Φ(C ∩ ω) ⊂ {(ζ1, ζ2) : v1 = ζ2 = 0}.

Now, Φ(∂Ω ∩ ω) is defined by

ρ(ζ1, ζ2) = r ◦ Φ−1(ζ1, ζ2).

We expand ρ around the origin in a Taylor series. We make use of the fact that Γk are almost
holomorphic with respect to {(ζ1, ζ2)| v1 = v2 = 0} to get

ρ(ζ) = 2 Re

 2∑
j=1

∂r

∂zj
(η(0, 0))

{
∂Γj

∂ζ1
(0, 0)ζ1 + (−i)

∂Γj

∂ζ2
(0, 0)ζ2

} + O(|ζ|2).

Using the fact that
∂Γj

∂ζk
(0, 0) =

∂γj

∂uk
(0, 0), j, k = 1, 2
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ρ(ζ) = 2 Re

 2∑
j=1

∂r

∂zj
(γ(0, 0))

∂γj

∂u1
(0, 0)ζ1 + (−i)

2∑
j=1

∂r

∂zj
(γ(0, 0))

∂γj

∂u2
(0, 0)ζ2

 + O(|ζ|2)

= 2 Re

(−i)
2∑

j=1

∂r

∂zj
(γ(0, 0))

∂γj

∂u2
(0, 0)ζ2

 + O(|ζ|2)

= −u2 + O(|ζ|2).

The second equality follows from the complex-tangency of Image[γ(�, 0)] which implies
2∑

j=1

∂r

∂zj
(γ(u1, 0))

∂γj

∂u1
(u1, 0) = 0 ∀u1 ∈ (−ε, ε),

and the last equality follows from the normalization condition on ∂γ(0,0)
∂u2

. We see that the only term
in the above expansion of first-order in either ζ1 or ζ2 is −u2. Hence, the hypersurface Φ(∂Ω∩ω) is
tangent at 0 to the hyperplane {(ζ1, ζ2) ∈ C2|u2 = 0} (in the remainder of this section, we will refer
to this hyperplane as H). Thus, we can find, near 0 ∈ C2, a defining function – and for convenience
of notation, we will continue to call it ρ – which has the form

(4.2) ρ(ζ) = A(ζ1) + B(ζ1)v2 + R(ζ1, v2)− u2,

where A(ζ1) = O(|ζ1|2) and R(ζ1, v2) = O(|v2|2). Then, since Φ(C ∩ ω) ⊂ Φ(∂Ω ∩ ω), setting
v1 = ζ2 = 0 in (4.2), we get

(4.3) A(u1) = 0 ∀(u1, 0) ∈ Φ(C ∩ ω).

And since Φ(M∩ ω) ⊂ Φ(∂Ω ∩ ω), setting v1 = u2 = 0 in (4.2), we see that B(u1)v2 + O(|v2|2) =
0 ∀(u1, v2) belonging to a small neighbourhood 0. Thus

(4.4) B(u1) = 0 ∀(u1, 0) ∈ Φ(C ∩ ω).

By construction, (∇ρ)(u1, v2) is a normal vector to Φ(M∩ ω) ∀(u1, v2) ∈ Φ(M∩ ω). This implies
that T(u1,v2)[Φ(∂Ω∩ω)] = H ∀(u1, v2) ∈ Φ(M∩ω). Computing (∇ρ)(u1, v2), we see that ∇A(u1)+
∇B(u1)v2 = 0 ∀(u1, v2) belonging to a neighbourhood of 0. Thus

(4.5) ∇A(u1) = ∇B(u1) = 0 ∀(u1, 0) ∈ Φ(C ∩ ω).

By (4.3), (4.4) and (4.5), we have the desired result. �

We now state the key lemma of this paper. It concerns the construction of an almost holomorphic
peak function of the type discussed in Section 2.

Proposition 4.2. Let Ω be a bounded pseudoconvex domain in C2 of finite type, and let ∂Ω be of
class C∞. Let C ⊂ ∂Ω be a complex-tangential curve of class C∞, and let ∂Ω be of constant type 2M

along C. Let p ∈ C. There exists a neighbourhood V ≡ V (p) of p and a uniform constant C > 0,
and for any open set U b V such that C ∩ U is an arc, there is a neighbourhood V1 ≡ V (p, U) of p

satisfying C ∩ V1 = C ∩ V and a function G ∈ C∞(V1) – G depending on p and U – which satisfies
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(1) G−1{1} = C ∩ U .
(2) ∂G vanishes to infinite order on V ∩C.
(3) |G(z)| ≤ 1− Cdist[z,C ∩ V ]2M for each z ∈ Ω ∩ V1.

Proof. Let ω 3 p and Φ : (ω, p) → (C2, 0) be the change of coordinate described in Lemma 4.1. Let
Φ(∂Ω ∩ ω) be defined by

(4.6) ρ(ζ1, ζ2) = A(ζ1) + B(ζ1)v2 + R(ζ1, v2)− u2.

Consider a point (x0, 0) ∈ Φ(C ∩ ω) and let

(4.7) %x0(ζ
∗
1 , ζ2) = Ax0(ζ

∗
1 ) + Bx0(ζ

∗
1 )v2 +Rx0(ζ

∗
1 , v2)− u2

represent the expansion of ρ in (4.6) around (x0, 0), where ζ∗1 := ζ1 − x0.

Claim 1. Shrinking ω if necessary, there is a c > 0 such that

(4.8) A(u1 + iv1) ≥ cv2M
1 , ∀ζ1 such that ζ ∈ Φ(ω).

As A(x0) = B(x0) = 0 and ∇A(x0) = ∇B(x0) = 0 for each (x0, 0) ∈ Φ(∂Ω ∩ ω), the right-hand
side of (4.7) represents a defining function of the form (2.1). By Remark 2.2(3), the function Ax0 in
(4.7) must vanish to order 2M at 0, whereby the function A in (4.6) must vanish precisely to order
2M at each (u1, 0) ∈ Φ(∂Ω ∩ ω). Now write

(4.9) A(u1 + iv1) = aJ(u1)vJ
1 + O(|v1|J+1),

where J is the least positive integer k such that ak 6≡ 0 near u1 = 0. By our above remarks, it is
clear that J ≤ 2M . But, if J < 2M , then if ũ1 is such that aJ(ũ1) 6= 0, then A vanishes to order
< 2M at u1 + iv1 = ũ1, which contradicts our remarks above. Thus, J = 2M in (4.9) and

A(u1 + iv1) = a2M (u1)v2M
1 + O(|v1|2M+1).

and a2M (0) 6= 0. Now recall that Φ is almost-holomorphic with respect to (M ∩ ω). If, in fact
(u1 + iv1, u2 + iv2) were holomorphic coordinates, then the pseudoconvexity of Ω would have implied
that

α : (u1, v1) 7→ a2M (u1)v2M
1 is subharmonic,

∆α(u1, v1) > 0 off {v1 = 0}, and (u1, v1) close to 0.

This would have implied that a2M (u1) > 0 for u1 close to 0 (the second statement above follows
from an obvious calculation). In our present situation, the coordinates (u1 + iv1, u2 + iv2) differ
from holomorphic ones by terms vanishing to arbitrarily high order along (C ∩ ω). From the last
two facts, we can conclude that shrinking ω if necessary

a2M (u1) > 0, ∀(u1, 0) ∈ Φ(∂Ω ∩ ω).

From this final fact, we deduce (4.8). Hence the claim.

Claim 2. We can find a ω1 b ω and a uniform constant T > 0 such that

(4.10) B(ζ1)2 ≤ TA(ζ1), ∀ζ ∈ Φ(Ω ∩ ω1).
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To see this, we use a procedure originating in [3, Secn. 3]. Write q = (x0, 0) ∈ Φ(C ∩ ω). The
positivity of the Levi-form for ∂Ω on the complex tangent vectors implies that were (u1+iv1, u2+iv2)
holomorphic coordinates there would be a δ > 0 such that the function L induced by the Levi-form
L : D(x0; δ)× (−δ, δ) → R defined by

L = |∂2̄ρ|2 ∂2
11̄ρ + |∂1̄ρ|2 ∂2

22̄ρ− 2Re[∂1ρ ∂2̄ρ ∂2
1̄2ρ]

would be non-negative (notice that L is independent of u2). In our present situation, however,
L(u1, v2) ≥ 0 ∀(u1, v2) ∈ Φ(M∩ ω).

Write

L(ζ1, v2) = L(0)(ζ1) + v2L
(1)(ζ1) + v2

2L(2)(ζ1) + O(|v2|3).

It has been shown in [3] that if ord(B) < ord(A), then

In(L(0)) =
1
4
In(∂2

11̄A), ord(L(0)) = ord(A)− 2,(4.11)

In(L(1)) =
1
4
In(∂2

11̄B), ord(L(1)) = ord(B)− 2.

If already 2ord(B) ≥ ord(A), then (4.10) would follow trivially. Thus, assume that 2ord(B) <

ord(A). Write r = ord(B). We have

1
λ2r−2

L(λ(u1 + i0), λrv2) ≥ 0, ∀(u1, v2) ∈ (x0 − δ, x0 + δ)× (−δ, δ), ∀λ ∈ R+.

But from (4.11) and our assumption

(4.12) lim
λ→0+

1
λ2r−2

L(λu1, λ
rv2) =

v2

4
In(∂2

11̄B)(ζ1).

Write

B(u1 + iv1) = bJ(u1)vJ
1 + O(|v1|J+1),

where J is the least positive integer k such that bk 6≡ 0 near u1 = 0. By Lemma 4.1(2), J ≥ 2,
whence In(B) is non-harmonic near 0. So, as v2 occurs linearly in the right-hand side of (4.12), it
is impossible that

v2

4
In(∂2

11̄B)(u1) ≥ 0, ∀(u1, v2) ∈ (x0 − δ, x0 + δ)× (−δ, δ).

This results in a contradiction. So 2ord(B) ≥ ord(A), which, in conjunction with the positivity of
A, viz. (4.8), yields (4.10).

Finally, define H : Φ(Ω ∩ ω1) → C by

H(ζ) = ζ2 − αζ2
2 ,

for α > 0 chosen appropriately large. We choose α as follows : Observe that

1
2
A(ζ1) + B(ζ1)v2 + R(ζ1, v2) +

α

6
v2
2

=
(

T√
2
v2 +

B(ζ1)√
2T

)2

+
1

2T
[TA(ζ1)−B(ζ1)2]−

T 2

2
v2
2 + R(ζ1, v2) +

α

6
v2
2 .
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The first two terms of the right-hand side of the above equation are positive, in view of (4.10). So,
we shrink ω1 appropriately, and choose α > 0 so large that

(4.13)
1
2
A(ζ1) + B(ζ1)v2 + R(ζ1, v2) +

α

6
v2
2 ≥ 0, ∀ζ ∈ Φ(Ω ∩ ω1).

Now consider :
Case (i). u2 ≥ 0. Let ε1 > 0 be so small that (u2 − αu2

2) ≥ u2/2 for ζ ∈ Φ(Ω ∩ B(p; ε1)) and such
that B(p; ε1) ⊂ ω1. Then, for all such ζ, we have :

Re[H(ζ)] = (u2 − αu2
2) + αv2

2(4.14)

≥ 1
2
u2 + αv2

2

=
1
4
u2 +

α

2
v2
2 +

1
4
(u2 + 2αv2

2)

≥ 1
4
u2 +

α

2
v2
2 +

1
4

[
{A(ζ1) + B(ζ1)v2 + R(ζ1, v2)}+ 2αv2

2

]
=

1
4
u2 +

1
8
A(ζ1) +

α

2
v2
2 +

1
4

[
1
2
A(ζ1) + B(ζ1)v2 + R(ζ1, v2) + 2αv2

2

]
& u2

2 + v2
2 + A(ζ1) [using (4.13)].

Case (ii). u2 < 0. Let ε2 > 0 be so small that (u2 − αu2
2) ≥ 2u2 for ζ ∈ Φ(Ω ∩ B(p; ε2)) and such

that B(p; ε2) ⊂ ω1. Then, for all such ζ, we have (we argue exactly as before)

Re[H(ζ)] ≥ −u2 +
α

2
v2
2 + 3

(
u2 +

α

6
v2
2

)
(4.15)

≥ −u2 +
3
2
A(ζ1) +

α

2
v2
2 + 3

[
1
2
A(ζ1) + B(ζ1)v2 + R(ζ1, v2) +

α

6
v2
2

]
& u2

2 + v2
2 + A(ζ1) [using (4.13)].

Now let ε0 = min(ε1, ε2). From (4.8), (4.14) and (4.15) we see that there is a uniform constant
κ > 0 such that

Re[H(ζ)] ≥ κ(u2
2 + v2

2 + v2M
1 )(4.16)

≥ κ dist[ζ, Φ(C ∩B(p; ε0))]2M ∀ζ ∈ Φ(Ω ∩B(p; ε0)).

Write Φ(C ∩ U) = (a, b), and without loss of generality, we may assume that a < 0 < b. Define
the function φ as follows

φ(u1) =


exp{1/(u1 − a)}, if u1 < a

0, if a ≤ u1 ≤ b

exp{−1/(u1 − b)}, if u1 > b.

Let r > 0 such that B(0; r) ⊃ Φ[B(p; ε0)], and let R(σ) be the rectangle

R(σ) = {(u1 + iv1) ∈ C | |u1| < r, |v1| < σ}.
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By an argument given in Noell [12, Lemma 2.1], there exists a smooth almost holomorphic extension
φ̃ of φ and a σ > 0 sufficiently small such that

(4.17) Re[φ̃(u1 + iv1)] ≥ −κ

2
v2M
1 , u1 + iv1 ∈ R(σ).

We set
V1(p, U) = B(p; ε0) ∩ Φ−1[Image(Φ) ∩ (R(σ)× C)].

From (4.16) and (4.17), we infer that the function G(z) = (1−φ̃)◦Φ(z)−H◦Φ(z) satisfies (1)-(3). �

5. The proof of Theorem 1.1

The proof of Theorem 1.1-(i) : Let C be as in Theorem 1.1-(i), and fix p ∈ C. Let V (p) be the
neighbourhood of p as given by Proposition 4.2. We will use Lemma 3.2 to provide a proof. Take Vp,
in the notation of that lemma, to be V (p). In the notation of Lemma 3.2, let χ ∈ C∞c (Vp; [0, 1]) be a
bump function such that int[χ−1{1}] ∩C is an arc. Write U = int[χ−1{1}]. Now let V1 = V1(p, U)
and G ∈ C∞(V1) be as given by Proposition 4.2.

Define

Gk(z) =

[G(z)]k χ(z), if z ∈ Ω ∩ V1

0, if z ∈ Ω \ V1.

Also define

(5.1) fk(z) = ∂Gk(z) = k[G(z)]k−1 ∂G(z) χ(z) + [G(z)]k ∂χ(z).

For a (0, 1) form φ(z) = φ1(z1)dz1 + φ2(z2)dz2 defined on Ω, define

‖φ‖Ω := max{supΩ|φ1(z)|, supΩ|φ2(z)|}.

By construction

(5.2) ‖Gk ∂χ‖Ω −→ 0 as k →∞.

Notice that ∂G vanishes to infinite order wherever G(z) = 1. Thus, for j = 1, 2

(5.3) |k[G(z)]k−1 ∂jG(z) χ(z)| . k[1−Cdist[z,C ∩ Vp]2M ]k−1|∂jG(z)| −→ 0 uniformly as k →∞.

From (5.2) and (5.3)

(5.4) ‖fk‖Ω −→ 0 as k →∞.

Now consider the following ∂−equations on Ω

∂uk = fk.

We need Lipschitz estimates for the solution of the ∂-equation on pseudoconvex domains in C2 of
finite type. Such estimates may be found in several places in the literature; for instance, in the
results of Chang, Nagel & Stein [5], which imply that

(5.5) ‖uk‖Ω ≤ ‖uk‖Λ1/N (Ω) ≤ C∗‖fk‖Ω ,
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where N is a positive integer such that τ(p) ≤ N for each p ∈ ∂Ω, Λ1/N (Ω) is the class of complex-
valued Lipschitz functions on Ω of order 1/N , and C∗ > 0 is a constant depending only on Ω. From
(5.4) and (5.5) we see that ‖uk‖Ω → 0, whence, defining

hk(z) = Gk(z)− uk(z), ∀z ∈ Ω

we have a sequence of A(Ω) functions with

lim
k→∞

hk(z) = lim
k→∞

Gk(z) =

χ(z), if z ∈ C ∩ Vp

0, if z ∈ Ω \ (C ∩ Vp).

Notice that, by construction, the sequence {hk}k∈N is uniformly bounded. {hk}k∈N ⊂ A(Ω) satisfies
properties (i)–(iii) in the hypothesis of Lemma 3.2 for the bump function χ ∈ C∞c (Vp; [0, 1]) such
that int[χ−1{1}] ∩C is an arc. Thus we conclude, using Lemma 3.2, that any compact subset of C

is a peak-interpolation set for A(Ω).

The proof of Theorem 1.1-(ii) : In the present situation, Ω is a bounded domain having a
real-analytic boundary and C is a real-analytic complex-tangential curve. Let B be an open ball in
C2 and let γ : (−2ε, 2ε) → C be an injective real-analytic parametrization of C locally such that
Image(γ|[−ε,ε]) = (C ∩B). Let p ∈ (C ∩B) be such that

τ(p) = min
q∈C∩B

τ(q).

Write τ(p) = 2M .

Recall that Hp ⊗ C(∂Ω) = H1,0
p (∂Ω) ⊕ H0,1

p (∂Ω), where H ⊗ C(∂Ω) is the complexification
of H(∂Ω), and that H1,0

p (∂Ω) and H0,1
p (∂Ω) are the eigenspaces of the complex-structure map J

corresponding to +i and −i respectively. Without loss of generality, we may assume that there is
an open set U ⊃ B and a real-analytic section L of H1,0(∂Ω)|U such that L(q) spans H1,0

q (∂Ω) and
L(q) ∈ {v ∈ H1,0

q (∂Ω) : ‖v‖ = 1} for each q ∈ (∂Ω ∩ U). Now consider the real-analytic function
L : S1 × I → R defined by

L(ζ, t) =
∑

j+k=2M
1≤j<2M

Lj−1L
k−1〈[L,L] , ∂ρ〉(γ(t))ζjζk,

where I is an open interval around [−ε, ε], S1 is the unit circle in C and ρ is a defining function of
∂Ω. Let t0 be such that γ(t0) = p. By the theorem of Bloom [4, Theorem 3.3], τ(p) = 2M implies
that there exists a ζ0 ∈ S1 such that L(ζ0, t0) 6= 0. Then, by the real-analyticity of L, we conclude
that

{t ∈ [−ε, ε] : L(ζ0, t) = 0} is a finite set S ⊂ [−ε, ε].

Write S = {t1, ..., tN}. By [4, Theorem 3.3] again, in each connected component of (C ∩ B) \
{γ1(t1), ..., γ(tN )}, ∂Ω is of constant type 2M . By Theorem 1.1-(i), therefore

(5.6) (C ∩B) \ {γ(t1), ..., γ(tN )} is a countable union of peak-interpolation sets.

Recall that Ω is a bounded domain with real-analytic boundary. By Bedford & Fornaess [1], therefore,
every point of ∂Ω is a peak point for A(Ω). So, each γ(tj), j = 1, ..., N ; is a peak point for A(Ω).
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This last fact, in conjunction with (5.6), implies that C is a countable union of peak-interpolation
sets for A(Ω), and that each compact subset of C is a peak-interpolation set for A(Ω).

Acknowledgement. The author wishes to thank Alexander Nagel for several useful discussions
during the course of this work.
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