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Abstract. We wish to study the problem of bumping outwards a pseudoconvex,
finite-type domain Ω ⊂ Cn in such a way that pseudoconvexity is preserved and
such that the lowest possible orders of contact of the bumped domain with ∂Ω, at
the site of the bumping, are explicitly realised. Generally, when Ω ⊂ Cn, n ≥ 3,
the known methods lead to bumpings with high orders of contact — which are
not explicitly known either — at the site of the bumping. Precise orders are
known for h-extendible/semiregular domains. This paper is motivated by certain
families of non-semiregular domains in C3. These families are identified by the
behaviour of the least-weight plurisubharmonic polynomial in the Catlin normal
form. Accordingly, we study how to perturb certain homogeneous plurisubhar-
monic polynomials without destroying plurisubharmonicity.

1. Introduction

This paper is a part of a study of the boundary-geometry of bounded pseudocon-
vex domains of finite type. For such a domain in C2, one can demonstrate many nice
properties that have major function-theoretic consequences. For example, Bedford
and Fornaess [1] showed that every boundary point of such a domain with real-
analytic boundary admits a holomorphic peak function. A similar conclusion was
obtained by Fornaess and Sibony [8] in the finite-type case. Later, Fornaess [7] and
Range [10] exploited a crucial ingredient needed in both [1] and [8] to obtain Hölder
estimates for the ∂-problem.

All of the mentioned results depend on the fact that the given domain in C2 has
a good local bumping. If Ω ⊂ Cn, n ≥ 2, is a smoothly bounded pseudoconvex
domain and ζ ∈ ∂Ω, we say that Ω admits a local bumping around ζ if we can find
a neighbourhood Uζ of ζ and a smooth function ρζ ∈ psh(Uζ) such that

i) ρ−1
ζ {0} is a smooth hypersurface in Uζ that is pseudoconvex from the side
U−

ζ := {z : ρζ(z) < 0}; and
ii) ρζ(ζ) = 0, but (Ω \ {ζ})

⋂
Uζ  U−

ζ .

We shall call the triple (∂Ω, Uζ , ρζ) a local bumping of Ω around ζ.

Diederich and Fornaess [5] did show that if Ω is a bounded, pseudoconvex domain
with real-analytic boundary, then local bumpings always exist around each ζ ∈ ∂Ω.
The problem however — from the viewpoint of the applications mentioned above —
is that the order of contact between ∂Ω and ρ−1

ζ {0} at ζ might be very high. In fact,
if Ω ⊂ Cn, n ≥ 3, then this order of contact is much higher, in many cases, than the
type of the point ζ ∈ ∂Ω. (See Catlin’s [3] and D’Angelo’s [2] for different notions
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of type.) Given these function-theoretic motivations, one would like to attempt to
solve the following problem:

(*) With Ω and ζ ∈ ∂Ω as above, construct a local bumping (∂Ω, Uζ , ρζ) such
that the orders of contact of ∂Ω

⋂
Uζ with ρ−1

ζ {0} at ζ along various direc-
tions V ∈ Tζ(∂Ω)

⋂
iTζ(∂Ω) are the lowest possible and explicitly known.

Consider the following situation: given Ω and ζ ∈ ∂Ω as above, we can find a
local holomorphic coordinate system (Vζ ;w, z1, . . . , zn−1), centered at ζ, such that

Ω
⋂
Vζ =

{
(w, z) ∈ Vζ : Re(w) + P2k(z) +O(|z|2k+1, |wz|, |w|2) < 0

}
,

where P2k is a plurisubharmonic polynomial in Cn−1 that is homogeneous of degree
2k. The first result in Cn, n ≥ 3, to address (*) is due to Noell [9]. He showed that if
P2k is plurisubharmonic and is not harmonic along any complex line through 0, then
Ω can be bumped homogeneously to order 2k around 0 ∈ Cn. So, one would like
to know whether some form of Noell’s result holds without the “nonharmonicity”
assumption on P2k.

A clearer connection between (*) and the boundary-geometry emerges when we
look at the Catlin normal form for ∂Ω near a finite-type ζ ∈ ∂Ω. If (1,m1, . . . ,mn−1)
is the Catlin multitype of ζ (readers are once more referred to [3]), and we write
Λ := (m1, . . . ,mn−1), then, there exists a local holomorphic coordinate system
(Vζ ;w, z1, . . . , zn−1), centered at ζ, such that

(1.1) Ω
⋂
Vζ

=
{
(w, z) ∈ Vζ : Re(w) + P (z) +O(|wz|, |w|2) + (higher-weight terms in z) < 0

}
,

where P is a Λ-homogeneous plurisubharmonic polynomial in Cn−1 that has no pluri-
harmonic terms. We say that P is Λ-homogeneous if P (t1/m1z1, . . . , t

1/mn−1zn) =
tP (z1, . . . , zn−1) ∀z = (z1, . . . , zn−1) ∈ Cn−1 and for every t > 0. Note that (*)
would be completely solved if one could prove the existence of a Λ-homogeneous
function H ∈ C∞(Cn−1) satisfying

H(z) ≥ C
n−1∑
j=1

|zj |mj ∀z ∈ Cn−1,

for some C > 0, such that (P − H) is strictly plurisubharmonic on Cn−1 \ {0}.
Unfortunately, this plan does not work in general. Yu in [12], and Diederich and
Herbort in [6], have independently shown that

(**) A Λ-homogeneous H of the sort described above exists only if there are no
complex-analytic subvarieties of Cn−1 of positive dimension along which P
is harmonic.

There are certainly domains in C3 for which the condition in (**) fails. Our paper
is inspired by the following examples where that condition fails:
Example 1:

Ω1 =
{
(w, z) ∈ C× C2 : Re(w) + |z1|6|z2|2 + |z1|8 + 15

7 |z1|
2Re(z6

1) + |z2|10 < 0
}
,

and
Example 2:

Ω2 =
{
(w, z) ∈ C× C2 : Re(w) + |z1z2|8 + 15

7 |z1z2|
2Re(z6

1z
6
2) + |z1|18 + |z2|20 < 0

}
.
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The difficulty in achieving (*), in either case, is the existence of complex lines in C2

along which P2k (in the notation used earlier) is harmonic. Note that the defining
functions of Ω1 and Ω2 are modelled on the polynomial

G(z) = |z|8 + 15
7 |z|

2Re(z6),

that features in the well-known Kohn-Nirenberg example. Recalling the behaviour
of G, we note that this rules out the possibility of bumping Ωj , j = 1, 2, by perturbing
the higher-order terms in (z1, z2).

This last remark suggests that we are committed to perturbing the lowest-order
— or, more generally, the lowest-weight — polynomial in z in the defining function
of (1.1). This is the first step towards obtaining the possible bumpings of (*). This,
in itself, is difficult because we are treating the case where the polynomial P (in the
terminology of (1.1)) is harmonic along certain complex subvarieties of Cn−1. The
structure of these exceptional varieties can be very difficult to resolve. However, we
can handle a large class of polynomials associated to domains in C3, which includes
Example 1 and Example 2. To obtain the possible bumpings, we need to construct
a non-negative, Λ-homogeneous function H ∈ C∞(C2) such that

P (z1, z2)−H(z1, z2) is plurisubharmonic ∀(z1, z2),

and such that
H(z1, z2) ≥ ε|P (z1, z2)| ∀(z1, z2) ∈ C2

for some ε > 0 sufficiently small. That is the focus of this paper. The precise results
are given in the next section. Since this focused task is already rather involved,
its application to specific function-theoretic estimates will be tackled in a different
article.

2. Statement of results

For clarity, we shall initially present our results in the setting of homogeneous
plurisubharmonic polynomials. However, we begin with some notation that is rel-
evant to the general setting. Thus, let P be a (m1,m2)-homogeneous plurisubhar-
monic polynomial on C2, and define:

ω(P ) := {z ∈ C2 : HC(P )(z) is not strictly positive definite},
C(P ) := the set of all irreducible complex curves V ⊂ C2

such that P is harmonic along the smooth part of V ,

where HC(P )(z) denotes the complex Hessian of P at z ∈ C2. As already mentioned,
we need to tackle the case when C(P ) 6= ∅.

Let us now consider P to be homogeneous of degree 2k (plurisubharmonicity
ensures that P is of even degree). If we assume that C(P ) 6= ∅, then there is a
non-empty collection of complex lines through the origin in C2 along which P is
harmonic. This follows from the following observation by Noell:

Result 2.1 (Lemma 4.2, [9]). Let P be a homogeneous, plurisubharmonic, non-
pluriharmonic polynomial in Cn, n ≥ 2. Suppose there exist complex-analytic va-
rieties of positive dimension in Cn along which P is harmonic. Then, there exist
complex lines through the origin in Cn along which P is harmonic.
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This collection of complex lines will play a key role. Let us denote this non-empty
collection of exceptional complex lines by E(P ). What is the structure of E(P ) ?
An answer to this is provided by the following proposition which is indispensable to
our construction, and which may be of independent interest:

Proposition 2.2. Let P be a plurisubharmonic, non-pluriharmonic polynomial in
C2 that is homogeneous of degree 2k. There are at most finitely many complex lines
passing through 0 ∈ C2 along which P is harmonic.

It is not hard to show that the set of complex lines passing through the origin in
C2 along which P is harmonic describes a real-algebraic subset of CP1. Thus, it
is possible a priori that the real dimension of this projective set equals 1. The
non-trivial part of Proposition 2.2 is that this set is in fact zero-dimensional.

The interpretation of E(P ) for (m1,m2)-homogeneous polynomials, m1 6= m2, is

E(P ) := the class of all curves of the form{
(z1, z2) : zm1/ gcd(m1,m2)

1 = ζz
m2/ gcd(m1,m2)
2

}
,

ζ ∈ C∞, along which P is harmonic

(with the understanding that ζ = ∞ ⇒ P is harmonic along {(z1, z2) ∈ C2 :
z2 = 0}). Note how E(P ) is just a collection of complex lines when m1 = m2 =
2k. As C(P ) 6= 0, perturbing P in the desired manner becomes extremely messy.
However, under certain conditions on ω(P ), we can describe the desired bumping in a
relatively brief and precise way. For this, we need one last definition. An (m1,m2)-
wedge in C2 is defined to be a set W having the property that if (z1, z2) ∈ W,
then (t1/m1z1, t

1/m2z2) ∈ W ∀t > 0. The terms open (m1,m2)-wedge and closed
(m1,m2)-wedge will have the usual meanings. Note that when m1 = m2 = 2k (the
homogeneous case), an (m1,m2)-wedge is simply a cone.

The problem we wish to solve can be resolved very precisely if the Levi-degeneracy
set ω(P ) possesses either one of the following properties:

Property (A): ω(P ) \
⋃

C∈E(P )C contains no complex subvarieties of posi-
tive dimension and is well separated from

⋃
C∈E(P )C. In more precise terms:

there is a closed (m1,m2)-wedge W ⊂ C2 that contains ω(P ) \
⋃

C∈E(P )C

and satisfies W
⋂

(
⋃

C∈E(P )C) = {0}.

OR

Property (B): There exists an entire function H such that P is harmonic
along the smooth part of every level-curve of H, i.e. ω(P ) = C2 and is
foliated by these level-curves.

Note that, in some sense, Property (A) and Property (B) represent the two extremes
of the complex structure within ω(P ), given that C(P ) 6= ∅.

The reader is referred to Section 1 for an illustration of these properties. The
set ω(P ) for Example 1 (resp. Example 2) has Property (A) (Property (B) resp.).
We feel that our main results — both statements and proofs — are clearest in the
setting of homogeneous polynomials. Thus, we shall first present our results in this
setting.
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Theorem 2.3. Let P (z1, z2) be a plurisubharmonic polynomial in C2 that is homo-
geneous of degree 2k and has no pluriharmonic terms. Assume that ω(P ) possesses
Property (A). Define E(P ) := the set of all complex lines passing through 0 ∈ C2

along which P is harmonic. Then:
1) E(P ) consists of finitely many complex lines; and
2) There exist a constant δ0 > 0 and a C∞-smooth function H ≥ 0 that is homoge-
neous of degree 2k such that the following hold:

(a) H−1{0} =
⋃

L∈E(P ) L.
(b) (P −δH) ∈ psh(C2) and is strictly plurisubharmonic on C2 \

⋃
L∈E(P ) L ∀δ ∈

(0, δ0).

The next theorem is the analogue of Theorem 2.3 in the case when ω(P ) possesses
Property (B)

Theorem 2.4. Let P (z1, z2) be a plurisubharmonic, non-pluriharmonic polynomial
in C2 that is homogeneous of degree 2k and has no pluriharmonic terms. Assume
that ω(P ) possesses Property (B). Then:
1) There exist a subharmonic, homogeneous polynomial U , and a holomorphic ho-
mogeneous polynomial F such that P (z1, z2) = U(F (z1, z2)); and
2) Let L1, . . . , LN be the complex lines passing through 0 ∈ C2 that constitute
F−1{0}. There exists a C∞-smooth function H ≥ 0 such that the following hold:

(a) H−1{0} =
⋃N

j=1 Lj.
(b) (P − δH) ∈ psh(C2) ∀δ : 0 < δ ≤ 1.

Before moving on to the weighted case, let us make a few observations about the
proofs of the above theorems. Part (1) of Theorem 2.4 follows simply after it is
established that P is constant on the level curves of the function H occurring in the
description of Property (B). Part (2) then follows by constructing a bumping of the
subharmonic function U . The latter is well understood; the reader is referred, for
instance, to [8, Lemma 2.4].

Proving Theorem 2.3 subtler. Essentially, it involves the following steps:
• Step 1: By Proposition 2.2, E(P ) is a finite set, say {L1, L2, . . . , LN}. Let
Lj := {(z1, z2) : z1 = ζjz2 ∀z2 ∈ C} for some ζj ∈ C. We fix a ζj , j =
1, . . . , N , and view P in (ζ, w)-coordinates given by the relations

z1 = (ζ + ζj)w, and z2 = w,

and we define j̃P (ζ, w) := P ((ζ + ζj)w,w). We expand j̃P (ζ, w) as a sum
of polynomials that are homogeneous in the first variable, with increasing
degree in ζ.

• Step 2: By examining the lowest-degree terms, in the ζ-variable, of this
expansion, one can find cones K(ζj ;σj), and functions Hj that are smooth
in K(ζj ;σj), j = 1, . . . , N , such that (P − δHj) are bumpings of P inside
the aforementioned cones for each δ : 0 < δ ≤ 1.

• Step 3: Property (A) allows us to patch together all these bumpings (P −
δHj), j = 1, . . . , N — shrinking δ > 0 sufficiently when necessary — to
obtain our result.

For any ζ ∈ C, the notation K(ζ; ε), used above, denotes the open cone

K(ζ; ε) := {(z1, z2) ∈ C2 : |z1 − ζz2| < ε|z2|}.
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Note that K(ζ; ε) is a conical neighbourhood of the punctured complex line {(z1 =
ζz2, z2) : z2 ∈ C\{0}}. The details of the above discussion are presented in Sections 3
and 4 below.

Continuing with the theme of homogeneous polynomials, we present a result which
— though it has no bearing on our Main Theorems below — we found in the course
of our investigations relating to Theorem 2.4. Since it could be of independent
interest, we present it as:

Theorem 2.5. Let P (z1, z2) be a plurisubharmonic, non-harmonic polynomial that
is homogeneous of degree 2p in z1 and 2q in z2. Then, P is of the form

P (z1, z2) = U(zd
1z

D
2 ),

where d,D ∈ Z+ and U is a homogeneous, subharmonic, non-harmonic polynomial.

The reader will note the resemblance between the conclusion of the above theorem
and Part (1) of Theorem 2.4. The proof of Theorem 2.5 is given in Section 5.

The reader will probably intuit that the bumping results for an (m1,m2)-homogeneous
P are obtained by applying Theorem 2.3 and Theorem 2.4 to the pullback of P by
an appropriate proper holomorphic mapping that homogenises the pullback. We
now state our results in the (m1,m2)-homogeneous setting. The first of our main
results — rephrased for (m1,m2)-homogeneous polynomials — is:

Main Theorem 2.6. Let P (z1, z2) be an (m1,m2)-homogeneous, plurisubharmonic
polynomial in C2 that has no pluriharmonic terms. Assume that ω(P ) possesses
Property (A). Then:
1) E(P ) consists of finitely many curves of the form{

(z1, z2) : zm1/ gcd(m1,m2)
1 = ζjz

m2/ gcd(m1,m2)
2

}
,

j = 1, . . . , N , where ζj ∈ C; and
2) There exist a constant δ0 > 0 and a C∞-smooth (m1,m2)-homogeneous function
G ≥ 0 such that the following hold:

(a) G−1{0} =
⋃

C∈E(P )C.
(b) (P −δG) ∈ psh(C2) and is strictly plurisubharmonic on C2 \

⋃
C∈E(P )C ∀δ ∈

(0, δ0).

The next result tells us what happens when ω(P ) possesses Property (B). How-
ever, in order to state this, we will need to refine a definition made in Section 1.
A real or complex polynomial Q defined on C2 is said to be (m1,m2)-homogeneous
with weight r if Q(t1/m1z1, t

1/m2z2) = trQ(z1, z2), ∀z = (z1, z2) ∈ C2 and for every
t > 0. Our second result can now be stated as follows

Main Theorem 2.7. Let P (z1, z2) be an (m1,m2)-homogeneous, plurisubharmonic
polynomial in C2 that has no pluriharmonic terms. Assume that ω(P ) possesses
Property (B). Then:
1) There exist a holomorphic polynomial F that is (m1,m2)-homogeneous with weight
1/2ν, ν ∈ Z+, and a subharmonic, polynomial U that is homogeneous of degree 2ν
such that P (z1, z2) = U(F (z1, z2)); and
2) There exists a C∞-smooth (m1,m2)-homogeneous function G ≥ 0 such that the
following hold:

(a) G−1{0} =
⋃

C∈E(P )C.
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(b) (P − δG) ∈ psh(C2) ∀δ : 0 < δ ≤ 1.

3. Some technical propositions

The goal of this section is to state and prove several results of a technical nature
that will be needed in the proof of Theorem 2.3. Key among these is Proposition 2.2,
stated above. We begin with its proof.

3.1. The proof of Proposition 2.2. Assume that P has at least one complex
line, say L, passing through 0 ∈ C2 such that P |L is harmonic. Since P non-
pluriharmonic, there exists a complex line Λ 6= L passing through 0 such that P |Λ is
subharmonic and non-harmonic. By making a complex-linear change of coordinate
if necessary, let us work in global holomorphic coordinates (z, w) with respect to
which

L = {(z, w) ∈ C2 | z = 0}, Λ = {(z, w) ∈ C2 | w = 0}.
Let M be the lowest degree to which z and z occur among the monomials consti-
tuting P . Let us write

P (z, w) =
2k∑

j=M

∑
α+β=j

µ+ν=2k−j

Cj
αβµνz

αzβwµwν .

Notice that by construction

s(z) :=
∑

α+β=2k

C2k
αβ00z

αzβ is subharmonic and non-harmonic.

We shall make use of this fact soon. We now study the restriction of P along the
complex lines Lζ := {(z = ζw,w) : w ∈ C}. Note that

(3.1) P (ζw,w) =
∑

m+n=2k


2k∑

j=M

∑
α+β=j

Cj
αβ,(m−α),(n−β)ζ

αζ
β

wmwn.

Denoting the function w 7→ P (ζw,w) by Pζ(w), let us use the notation

4Pζ(w) ≡
∑

m+n=2k

φmn(ζ)wm−1wn−1.

Note that
(3.2)
{ζ ∈ C : P |Lζ is harmonic} = {ζ ∈ C : φmn(ζ) = 0 ∀m,n ≥ 0 � m+ n = 2k}.

Since Pζ is subharmonic ∀ζ ∈ C, the coefficient of the |w|2k term occurring in (3.1)
— i.e. the polynomial φkk(ζ)/k2 — is non-negative, and must be positive at ζ ∈ C
whenever Pζ is non-harmonic. To see this, assume for the moment that, for some
ζ∗ ∈ C, Pζ∗ is non-harmonic but φkk(ζ∗) ≤ 0. Then, as Pζ∗(w) is real-analytic,
4Pζ∗(eiθ) > 0 except at finitely many values of θ ∈ [0, 2π). Hence, we have

0 <

∫ 2π

0
4Pζ∗(eiθ) dθ =

∫ 2π

0

{ ∑
m+n=2k

φmn(ζ∗)ei(m−n)θ

}
dθ = 2π φkk(ζ∗).

The assumption that φkk(ζ∗) ≤ 0 produces a contradiction in the above inequality,
whence our assertion. Thus φkk ≥ 0.



8 GAUTAM BHARALI AND BERIT STENSØNES

Let us study the zero-set of φkk. We first consider the highest-order terms of φkk,
namely ∑

α+β=2k

k2C2k
αβ,(k−α),(k−β)ζ

αζ
β = k2C2k

kk00|ζ|2k.

The tidy reduction on the right-hand side occurs because we must only consider
those pairs of subscripts (α, β) such that (k − α) ≥ 0 and (k − β) ≥ 0. Note that
C2k

kk00 is the coefficient of the |z|2k term of s(z), which is subharmonic and non-
harmonic. Thus C2k

kk00 > 0. The nature of the highest-order term of φkk shows that
φkk 6= 0 when |ζ| is sufficiently large. We have thus inferred the following
Fact: φkk is a real-analytic function such that φkk ≥ 0, φkk 6≡ 0, and such that
φ−1

kk {0} is compact.

Since φkk is a real-analytic function on C that is not identically zero, dimR[φ−1
kk {0}] ≤

1. Let us assume that dimR[φ−1
kk {0}] = 1. We make the following

Claim: The function φkk is subharmonic
Consider the function

S(ζ) :=
k2

2π

∫ 2π

0
P (ζeiθ, eiθ) dθ .

Notice that

(3.3) S(ζ) :=
k2

2π

∫ 2π

0

{ ∑
m+n=2k

φmn(ζ)
mn

ei(m−n)θ

}
dθ = φkk(ζ).

Furthermore, denoting the function ζ 7→ P (ζw,w) by Pw(ζ), we see that

(3.4)
∂2S

∂ζ∂ζ
(ζ) =

k2

2π

∫ 2π

0

∂2Peiθ

∂ζ∂ζ
(ζ) dθ =

k2

2π

∫ 2π

0

∂2P

∂z∂z
(ζeiθ, eiθ) dθ ≥ 0.

The last inequality follows from the plurisubharmonicity of P . By (3.3) and (3.4),
the above claim is established.

By assumption, φ−1
kk {0} is a 1-dimensional real-analytic variety, and we have

shown that it is compact. Owing to compactness, there is an open, connected
region D b C such that ∂D is a piecewise real-analytic curve (or a disjoint union of
piecewise real-analytic curves). Furthermore

φkk(ζ) > 0 ∀ζ ∈ D, φkk(ζ) = 0 ∀ζ ∈ ∂D.

But the above statement contradicts the Maximum Principle for φkk, which is sub-
harmonic. Hence, our assumption must be wrong. Thus, φ−1{0} is a discrete
set; and being compact, it is a finite set. In view of (3.2), we have {ζ ∈ C :
P |Lζ is harmonic} ⊆ φ−1

kk {0}, which establishes our result. �

Our next result expands upon of the ideas summarised in Step 1 and Step 2 in
Section 2 above. But first, we remind the reader that, given a function G of class
C2 in an open set U ⊂ C2 and a vector v = (v1, v2) ∈ C2, the Levi-form LG(z; v) is
defined as

LG(z; v) :=
2∑

j,k=1

∂2
jk
G(z)vjvk.

A comment about the hypothesis imposed on P in the following result: the P below
is the prototype for the polynomials j̃P discussed in Step 1 of Section 2.
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Proposition 3.2. Let P (z1, z2) be a plurisubharmonic polynomial that is homo-
geneous of degree 2k, and contains no pluriharmonic terms. Assume that P (z1, z2)
vanishes identically along L := {(z1, z2) : z1 = 0} and that there exists an ε > 0 such
that P is strictly plurisubharmonic in the cone (K(0; ε) \ L). There exist constants
C1 and σ > 0 — both of which depend only on P — and a non-negative function
H ∈ C∞(C2) that is homogeneous of degree 2k such that:

a) H(z1, z2) > 0 when 0 < |z1| < σ|z2|.
b) For any δ : 0 < δ ≤ 1:

L(P − δH)(z; (V1, V2)) ≥ C1|z1|2(k−1)

(
|V1|2

(
1− δ

2

)
+
∣∣∣∣z1z2V2

∣∣∣∣2
)

∀z : 0 ≤ |z1| < σ|z2|,∀V ∈ C2.

Proof. Let us write

P (z1, z2) =
2k∑

j=M

Qj(z1, z2),

where each Qj is the sum of all monomials of P that involve powers of z1 and z1

having total degree j, M ≤ j ≤ 2k. We make a Levi-form calculation. Let us define
φ := Arg(w) and α := Arg(ζ). With this notation, the Levi-form of P at points
(z1, z2) = (ζw,w) can be written as

(3.5) LP ((ζw,w);V )

:= |w|2(k−1)
2k∑

j=M

|ζ|j−2 × (V1 ζV2)

 T
(j)
11 (φ, α) T

(j)
12 (φ, α)

T
(j)
12 (φ, α) T

(j)
22 (φ, α)


 V1

ζV2

 .

where T (j)
11 , T (j)

12 and T (j)
22 are trigonometric polynomials obtained when LQj((ζw,w);V )

is written out using the substitutions

w = |w|eiφ and ζ = |ζ|eiα,
j = M, . . . , 2k. Now, consider the matrix-valued functions F(r; ·) : T× T −→ C2×2

defined by

F(r; θ1, θ2) :=
2k∑

j=M

rj−2

 T
(j)
11 (θ1, θ2) T

(j)
12 (θ1, θ2)

T
(j)
12 (θ1, θ2) T

(j)
22 (θ1, θ2)

 .

Here T stands for the circle, and F(r; ·) is a periodic function in (θ1, θ2). Let us
introduce the notation µ(M) := minλ∈σ(M) |λ| — i.e. the modulus of the least-
magnitude eigenvalue of the matrix M . Since F(r; ·) takes values in the class of
2× 2 Hermitian matrices, we get

(3.6) µ [F(r; θ1, θ2)] =
|det(F(r; θ1, θ2))|
‖F(r; θ1, θ2)‖2

,

where the denominator represents the operator norm of the matrix F(r; ·). Since
P ∈ spsh (K(0; ε) \ L), comparing F(r; ·) with the Levi-form computation (3.5), we
see that, provided r ∈ (0, ε)

• F(r; ·) takes strictly positive-definite values on T× T;
• in view of the above and by the relation (3.6), µ [F(r; ·)] are continuous

functions on T× T; and
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• owing to the preceding two facts, an estimate of µ [F(r; ·)] using the qua-
dratic formula tells us that there exists a C1 > 0 such that

µ [F(r; θ1, θ2)] ≥ C1r
2(k−1) ∀(θ1, θ2) ∈ T× T

(provided r : 0 < r < ε).

Substituting θ1 = φ and θ2 = α above therefore gives us

LP ((ζw,w);V ) ≥ C1|ζ|2(k−1)|w|2(k−1)
(
|V1|2 + |ζV2|2

)
∀ζ : 0 ≤ |ζ| < ε,

∀w ∈ C and ∀V ∈ C2.

Let us now define
H(z1, z2) :=

C1

2k2
|z1|2k,

and fix a σ such that 0 < σ < ε. Then

L(P − δH)((ζw,w);V ) ≥ C1|ζ|2(k−1)|w|2(k−1)

(
|V1|2

(
1− δ

2

)
+ |ζV2|2

)
∀ζ : 0 ≤ |ζ| < σ, ∀w ∈ C and ∀V ∈ C2.

The last inequality is the desired result. �

Our next lemma is the first result of this section that refers to Λ-homogeneous
polynomials for a general ordered pair Λ. This result will provide a useful first
step towards tackling the theorems in Section 2 pertaining to plurisubharmonic
polynomials that possess Property (B).

Lemma 3.3. Let P be a (m1,m2)-homogeneous plurisubharmonic, non-pluriharmonic
polynomial in C2 having Property (B). Then, there exists a rational number q∗ and
a complex polynomial F that is (m1,m2)-homogeneous with weight q∗ such that P
is harmonic along the smooth part of the level sets of F .

Proof. Let us first begin by defining M := the largest positive integer µ such that
there exists some f ∈ O(C2) and fµ = H (here, H is as given by Property (B)).
Define F by the relation FM = H. Observe that the hypotheses of this lemma
continue to hold when H is replaced by F .

Let Dt denote the dilations Dt : (z1, z2) 7−→ (t1/m1z1, t
1/m2z2), and define the set

S(P ) := {z ∈ C2 : HC(P )(z) = 0}. Since, by hypothesis, det [HC(P )] ≡ 0, we have

S(P ) = {z ∈ C2 : (∂2
11
P + ∂2

22
P )(z) = tr(HC(P ))(z) = 0}.

As P is not pluriharmonic, dimR [S(P )] ≤ 3, and S(P ) is a closed subset of C2.
Hence, by the open-mapping theorem

W (P ) := F (C2 \S(P ))

is a non-empty open subset of C. Pick any c ∈ W (P ) and set Vc := F−1{c}. Then
Vc
⋂

S(P ) = ∅; and, in view of the transformation law for the Levi-form and the
fact that P is (m1,m2)-homogeneous, Dt(Vc)

⋂
S(P ) = ∅ ∀t > 0. We now make the

following
Claim. Each Dt(Vc), t > 0, is contained in some level set of F (c ∈ W (P ) as
assumed above).
To see this we note that by the transformation law for the Levi-form, P is harmonic
along the smooth part of Dt(Vc) ∀t > 0. If Dt(Vc), for some t > 0, is not contained
in any level set, then there would exist a non-empty, Zariski-open subset, say S, of
the curve Dt(Vc) such that:
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• for each ζ ∈ S, there is some level set of F passing through ζ that is trans-
verse to Dt(Vc) at ζ; and

• owing to the above, LP (ζ; ·) ≡ 0 ∀ζ ∈ S.
But the second statement above cannot be true because Dt(Vc)

⋂
S(P ) = ∅. Hence

the claim.
We now define the following function φ : W (P )× (0,∞) −→W (P ) defined by

φ(c, t) := the number b ∈ C such that F−1{b} ⊃ Dt(Vc).

The above φ is well-defined in view of the claim above. Define the following two sets

Supp(F ) :=

{
α ∈ N2 :

∂|α|F

∂zα
(0) 6= 0

}
,

I(F ) :=
{
α1m2 + α2m1

m1m2
: (α1, α2) ∈ Supp(F )

}
.

By construction of I(F ), we can write

F (z) =
∑

q∈I(F )

Pq(z1, z2)

where each polynomial Pq is a regrouping of the terms in the Taylor expansion of F
around z = 0 such Pq is (m1,m2)-homogeneous with weight q. The above discussion
implies that

(3.7)
∑

q∈I(F )

Pq(t1/m1z1, t
1/m2z2)

= φ(F (z), t)
∑

q∈I(F )

Pq(z1, z2) ∀(z1, z2) ∈ C2 \S(P ) and ∀t > 0.

On the other hand:
(3.8)∑
q∈I(F )

Pq(t1/m1z1, t
1/m2z2) =

∑
q∈I(F )

tqPq(z1, z2) ∀(z1, z2) ∈ C2 \S(P ) and ∀t > 0.

Since z varies through an open set in both the equations above, comparing (3.7)
and (3.8) gives us

Pq 6≡ 0 =⇒ φ(F (z), t) = tq ∀t > 0 and ∀z ∈ C2 \S(P ).

From this, we conclude that there exists a q∗ ∈ I(F ) such that Pq ≡ 0 if q 6= q∗; and
F ≡ Pq∗ . Hence the result. �

Our next result will play a key role in the proofs pertaining to polynomials having
Property (B). It is a rephrasing of [8, Lemma 2.4]. Since it is an almost direct
rephrasing, we shall not prove this result. Readers are, however, referred to the
remark immediately following this lemma.

Lemma 3.4. Let U : C → R be a real-analytic, subharmonic, non-harmonic func-
tion that is homogeneous of degree j. There exist a positive constant C ≡ C(U) —
i.e. depending only on U — and a 2π-periodic function h ∈ C∞(R) such that:

a) 0 < h(x) ≤ 1 ∀x ∈ R.
b) 4

(
U − δ| · |jh ◦ Arg(·)

)
(z) ≥ δC|z|j−2 ∀z ∈ C and ∀δ : 0 < δ ≤ 1. (Here

Arg(·) refers to any continuous branch of the argument.)
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Remark 3.5. The δ > 0 appearing in the above lemma must not be confused for
the δ appearing in the statement [8, Lemma 2.4]. The latter δ is a universal constant
which is a component of the constant C(U) in our notation. If we denote the δ of
[8, Lemma 2.4] by δuniv, then our C(U) is a polynomial function of δuniv and

(in the notation of [8]) ‖U‖ := sup
|z|=1

|U(z)|.

4. Proofs of the theorems in the homogeneous case

We begin with the proof of Theorem 2.3, most of whose ingredients are now
available from the previous section. However, we need one last result, which is
derived from [9].

Result 4.1 (Version of Prop. 4.1 in [9]). Let P be a plurisubharmonic polynomial on
Cn that is homogeneous of degree 2k. Let ω0 be a connected component of ω(P )\{0}
having the following two properties:

a) There exist closed cones K1 and K2 such that

ω0 ⊂ int(K1) ⊂ K1 \ {0}  int(K2),

and such that K2
⋂

(ω(P ) \ ω0) = ∅.
b) ω0 does not contain any complex-analytic subvarieties of positive dimension

along which P is harmonic.
Then, there exist a smooth function H ≥ 0 that is homogeneous of degree 2k and
constants C, ε0 > 0, which depend only on P , such that int(K2) = {H > 0} and such
that for each ε : 0 < ε ≤ ε0, L(P − εH)(z; v) ≥ Cε‖z‖2(k−1) ‖v‖2 ∀(z, v) ∈ K2×Cn.

The above result is not phrased in precisely these terms in [9, Proposition 4.1].
The proof of the latter proposition was derived from a construction pioneered by
Diederich and Fornaess in [4]. A close comparison of the proof of [9, Proposition 4.1]
with the Diederich-Fornaess construction reveals that incorporating the assumption
(a) in Result 4.1 allows us to obtain the above “localised” version of [9, Proposi-
tion 4.1].

4.2. The proof of Theorem 2.3. Note that Part (1) follows simply from Propo-
sition 2.2. Hence, let us denote the set E(P ) by E(P ) = {L1, . . . , LN}. Let K be
the closed cone whose existence is guaranteed by Property (A). By assumption, we
can find a slightly larger cone K∗ such that

ω(P ) \ (
N⋃

j=1

Lj) ⊂ int(K) ⊂ K \ {0}  int(K∗),

and such that K∗
⋂

(
⋃N

j=1 Lj) = {0}. Hence, in view of Result 4.1, we can find a
smooth function H0 ≥ 0 that is homogeneous of degree 2k, and constants C0, ε0 > 0
such that

{z : H0 > 0} = int(K∗),

L(P − δH0)(z; v)(4.1)

≥ C0δ‖z‖2(k−1) ‖v‖2 ∀(z, v) ∈ K∗ × C2, and ∀δ ∈ (0, ε0).
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Without loss of generality, we may assume that each Lj is of the form Lj =
{(ζjz2, z2) : z2 ∈ C}. Applying Proposition 3.2 to

j̃P (z1, z2) := P (z1 + ζjz2, z2)

we can find:

• a constant B1 > 0 that depends only on P ;
• constants σj > 0, j = 1, . . . , N , that depend only on P and j; and
• functions Hj ∈ C∞(C2) that are homogeneous of degree 2k;

such that

L(P − δHj)(z; v)

≥ δB1|z1 − ζjz2|2(k−1)

(
|v1 − ζjv2|2

(
1− δ

2

)
+
∣∣∣∣z1 − ζjz2

z2
v2

∣∣∣∣2
)

∀(z, v) ∈
[
K(ζj ;σj) \ {0}

]
× C2 and ∀δ : 0 < δ ≤ 1.

The reader is reminded that K(ζj ;σj) denotes an open cone, as introduced in Sec-
tion 2, and that the right-hand side above is finite. Let σ̃j > 0, j = 1, . . . , N , be so
small that

2σ̃j ≤ σj , j = 1, . . . , N,

(K(ζj ; 2σ̃j) ∩ S3)
⋂

(K∗ ∩ S3) = φ ∀j ≤ N,

(K(ζj ; 2σ̃j) ∩ S3)
⋂

(K(ζk; 2σ̃k) ∩ S3) = φ if j 6= k.(4.2)

Here, S3 denotes the unit sphere in C2. We introduce these new parameters in order
to patch together all the above “localised” bumpings.

Let us now define

Vj := K(ζj ; σ̃j) ∩ S3, and Uj := K(ζj ; 2σ̃j) ∩ S3.

Let χj : S3 −→ [0, 1] be a smooth cut-off function such that χj |Vj ≡ 1 and
supp(χj) ⊂ Uj , j = 1, . . . , N . Let us define Ψj(z) := χj(z/‖z‖) ∀z ∈ C2 \ {0}.
Finally, let us use the expression ΨjHj to denote the homogeneous function defined
as

ΨjHj(z) :=

{
Ψj(z)Hj(z), if z 6= 0,
0, if z = 0.

Note that ΨjHj ∈ C∞(C2) and is homogeneous of degree 2k. Let us now esti-
mate the Levi-form of (P − δΨjHj) on K(ζj ; 2σ̃j) \K(ζj ; σ̃j). Since, by construc-
tion, (P − δΨjHj) is strictly plurisubharmonic on K(ζj ; 2σ̃j) \K(ζj ; σ̃j), and strict
plurisubharmonicity is an open condition, we infer from continuity and homogeneity:

(4.3) ∃ε� 1 such that (P − δΨjHj) is strictly

pseudoconvex on K(ζj ; σ̃j + ε) ∀j = 1, . . . , N , and for each δ : 0 < δ ≤ 1/2.

For the moment, let us fix j ≤ N . Note that, by construction, we can find a βj > 0
such that

(1−Ψj)(z) ≥ βj ∀z ∈ K(ζj ; 2σ̃2) \K(ζj ; σ̃j + ε).
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Furthermore, since (σ̃j + ε)|z2| < |z1 − ζjz2| < 2σ̃j |z2| in the cone K(ζj ; 2σ̃2) \
K(ζj ; σ̃j + ε), applying this to (4.2) gives us small constants γj , cj > 0 such that

L(P − δHj)(z; v) ≥ γj‖z‖2(k−1)‖v‖2 ∀z ∈ K(ζj ; 2σ̃2) \K(ζj ; σ̃j + ε),
(4.4)

∀v ∈ C2, and ∀δ : 0 < δ ≤ 1/2;

LP (z; v) ≥ cj‖z‖2(k−1)‖v‖2 ∀(z, v) ∈ (K(ζj ; 2σ̃2) \K(ζj ; σ̃j + ε))× C2.(4.5)

From the estimates (4.4) and (4.5), we get

L(P − δΨjHj)(z; v) = Ψj(z)L(P − δHj)(z; v) + (1−Ψj)(z)LP (z;V )

− δHj(z)LΨj(z; v)− 2δRe

 2∑
µ,ν=1

∂µΨj(z)∂νΨk(z)vµvν


≥ ‖z‖2(k−1)‖v‖2 (γjΨj(z) + cjβj)

− δ

2

∣∣∣∣∣∣
2∑

µ,ν=1

∂µΨj(z)∂νΨk(z)vµvν

∣∣∣∣∣∣+ |Hj(z)LΨj(z; v)|


∀z ∈ K(ζj ; 2σ̃2) \K(ζj ; σ̃j + ε) and ∀v ∈ C2.

Finally, we can find constants K1,K2,K3 > 0 and a δj > 0 that is so small that, in
view of the above calculation, we can make the following estimates:

L(P − δΨjHj)(z; v) ≥ ‖z‖2(k−1)‖v‖2 (cjβj − 2δK1)− 2δK2|Hj(z)|‖v‖2(4.6)

≥ cjβj

2
‖z‖2(k−1)‖v‖2

≥ δK3‖z‖2(k−1)‖v‖2

∀z ∈ K(ζj ; 2σ̃2) \K(ζj ; σ̃j + ε),

∀v ∈ C2, and ∀δ : 0 < δ ≤ δj .

Let us now set

H̃ := H0 +
N∑

j=1

ΨjHj ,

δ0 := min(ε0, δ1, . . . , δN ).

So far, in view of (4.3) and (4.6), we have accomplished the following:

i) (P − δH̃) ∈ psh(C2), and (P − δH̃) is strictly plurisubharmonic on C2 \⋃N
j=1 Lj ∀δ ∈ (0, δ0).

ii) {z : H̃ > 0} = int(K∗)
⋃

(
⋃N

j=1(K(ζj ; 2σ̃j) \ Lj)).
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All we now have to do is make a perturbation of H̃ to get an H that is strictly
positive where desired. To carry this out, let:

W0 := S3
⋂int(K∗)

⋃ N⋃
j=1

K(ζj ; 2σ̃j)

C

,

W1 = some small S3-neighbourhood of W0 such that (
N⋃

j=1

Lj)
⋂
W1 = ∅.

Now let χ∗ : S3 −→ [0, α] be a smooth cut-off function on S3 such that χ∗|W0 ≡ α
and supp(χ∗) ⊂W1, where α > 0 is so small that if we define

H(z) := H̃(z) + ‖z‖2kχ∗
(

z

‖z‖

)
,

then — in view of (i) above — Part (b) of this theorem follows without altering the
conclusion of (i) above when H̃ is replaced by H. Hence (a) follows. �

Next, we provide:

4.3. The proof of Theorem 2.4. Let us first begin by defining M := the largest
positive integer µ such that there exists some f ∈ O(C2) and fµ = H. Define F
by the relation FM = H. Observe that the hypotheses of Theorem 2.4 continue to
hold when H is replaced by F .
Step I. The function F is a homogeneous polynomial
This is a straightforward application of Lemma 3.3. Note that our preliminary
construction of F is precisely the F provided by Lemma 3.3 applied to (m1,m2) =
(2k, 2k).
Step II. To show that P is constant on each level-set of F
First we note that, without loss of generality, we may assume that F |z1=0 6≡ 0. If
not, we carry out the following change of coordinates

Z1 := z1 − ζ0z2

Z2 := z2,

where ζ0 ∈ C \ {0} is so chosen that F |z1=ζ0z2 6≡ 0. If we define

P̃ (Z1, Z2) := P (Z1 + ζ0Z2, Z2) and F̃ (Z1, Z2) := F (Z1 + ζ0Z2, Z2),

then it is easy to check that
• P̃ is harmonic along the smooth part of each level curve of F̃ ; and
• F̃ |Z1=0 6≡ 0.

Hence, we may as well assume that F satisfies the desired condition. Then, by ho-
mogeneity of F , F (0, ·) is non-constant. By the Fundamental Theorem of Algebra,
then

(4.7) {z ∈ C2 : z1 = 0}
⋂
F−1{c} 6= ∅ ∀c ∈ C.

Let us now assume that P is non-constant on F−1{c} for some c ∈ C. The fact
that P being non-constant on F−1{c} is an open condition in c ∈ C implies, in
conjunction with (4.7), that we can find a c0 close to c and a w0 ∈ C such that

• P is non-constant along F−1{c0};
• the point q0 = (0, w0) lies on F−1{c0}; and
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• q0 is not a singular point of F−1{c0}.
Then, by construction, there exists an ε > 0 and a holomorphic map on the unit
disc, Ψ = (ψ1, ψ2) : D −→ B(q0; ε) such that Ψ(0) = q0 and Ψ parametrises
F−1{c0}

⋂
B(q0; ε).

Let us adopt the notations from the proof of Proposition 2.2 and write

P (z, w) =
2k∑

j=M

∑
α+β=j

µ+ν=2k−j

Cαβµνz
αzβwµwν .

By hypothesis, the function

v(ξ) :=
2k∑

j=M

∑
α+β=j

µ+ν=2k−j

Cj
αβµνψ1(ξ)αψ1(ξ)βψ2(ξ)µψ2(ξ)ν , ξ ∈ D,

is harmonic on the unit disc. Since, by hypothesis, P has no pluriharmonic terms,
and the requirement of harmonicity forces v to have only harmonic terms in its
Taylor expansion about ξ = 0, we have:

(4.8) v(ξ)

:=
2k∑

j=M

∑
α+β=j

µ+ν=2k−j

Cj
αβµν

{
ψ1(ξ)αψ2(ξ)µψ1(0)βψ2(0)ν + ψ1(0)αψ2(0)µψ1(ξ)βψ2(ξ)ν

}
.

However, recall that ψ1(0) = 0. In view of (4.8), this forces the conclusion v ≡ 0.
But this results in a contradiction because, by real-analyticity, v = P ◦Ψ ≡ 0 would
force P to vanish on F−1{c0}. This establishes Step II.

Step III. The proof of Part (1)
Let us define the function U : C −→ R as

U(c) := P (z(c)
1 , z

(c)
2 ),

where (z(c)
1 , z

(c)
2 ) is any point lying in F−1{c}. We would be done if we could show

that U is real-analytic. Let us outline our strategy before tackling the details. The
strategy may be summarised as follows:

1) We shall choose a complex line Λτ := {(z1, z2 = τz1) : z1 ∈ C} such that
F |Λτ is non-constant. We can then show that for almost every c0 ∈ C, we
can find a function uc0 that is holomorphic in a neighbourhood V c0 3 c0 and
parametrises a designated root of the equation F |Λτ = c as c varies through
V c0 . In other words:

uc0 : c 7−→ (uc0(c), τuc0(c)) ∈
⋃
ζ∈C

(
Λτ ∩ F−1{ζ}

)
,

(uc0(c), τuc0(c)) ∈ F−1{c} as c varies through V c0 .

2) Clearly, U |V c0 = P (uc0 , τuc0). As real-analyticity is a local property, we
would be done if the conclusions of (1) could be established in a neighbour-
hood of every c0 ∈ C. This can be achieved by repeating the above analysis
on a different complex line Λη 6= Λτ . Subharmonicity would follow from a
Levi-form calculation.
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The details follow.
Accordingly, choose any τ ∈ C such that

Fτ : z 7−→ F (z, τz) is a non-constant polynomial.

Recall that — given a complex, univariate polynomial p — the map

dscp(c) := the discriminant of the polynomial p(z)− c

has the following two properties:
i) dscp(c) is a complex polynomial in c.
ii) dscp(c) = 0 ⇐⇒ the equation p(z)− c = 0 has repeated roots.

The reader is referred to van der Waerden’s book [11] for an exposition on the
discriminant. With this information in mind, let us define

dscτ (c) := the discriminant of the polynomial Fτ (z)− c.

Then, by (ii) above, dsc−1
τ {0} is a finite set, and if c0 ∈ C \ dsc−1

τ {0}, then there
exists an open disc D(c0; δ) ⊂ C\dsc−1

τ {0} such that the equation Fτ (z)− c = 0 has
deg(Fτ ) simple roots for each c ∈ D(c0; δ). In fact, we can find a uc0 ∈ O(D(c0; δ))
such that

Fτ (uc0(c))− c = 0 ∀c ∈ D(c0; δ).
Note that by the above equation and our hypothesis on P , we have

(4.9) U(c) = P (uc0(c), τuc0(c)) ∀c ∈ D(c0; δ).

Since c0 was arbitrarily chosen from C \ dsc−1
τ {0}, and real-analyticity is a local

property, we have just shown that U ∈ Cω(C \ dsc−1
τ {0}). But we can now repeat

the above argument with some η 6= τ , with the property that(
C \ dsc−1

τ {0}
)⋃(

C \ dsc−1
η {0}

)
= C,

replacing τ . We then get a version of equation (4.9) with η in place of τ . This
establishes that U ∈ Cω(C). By construction, P = U ◦ F . Given the homogeneity
of P and F (from Step I), it is obvious that U is homogeneous. Now, performing a
Levi-form computation, we get

LP (z1, z2; (V1, V2)) =
1
4
4 U(F (z1, z2))

(4.10)

× (V1 V2)

 |∂1F |2 ∂1F ∂2F

∂1F ∂2F |∂2F |2


(z1,z2)

V 1

V 2

 .

Since LP (z1, z2; �) must be positive semi-definite at every (z1, z2) ∈ C2, this forces
the conclusion 4U ≥ 0. Hence, U is subharmonic, and Part (1) is thus established.

Step IV. The proof of Part (2)
Write 2ν := deg(U) (the degree of U is even due to subharmonicity). We apply
Lemma 3.4 to the subharmonic U to obtain the smooth function h that satisfies the
conclusions of that lemma. Now define

H(z1, z2) :=

{
|F (z1, z2)|2νh(Arg(F (z1, z2))), if (z1, z2) /∈ F−1{0},
0, if (z1, z2) ∈ F−1{0},
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where Arg(·) refers to any continuous branch of the argument. Now, a Levi-form
computation reveals that

L(P − δH)(z1, z2; (V1, V2)) =
1
4
|F (z1, z2)|2(ν−1) 4

(
U − δ| · |2νh ◦ Arg(·)

)
(F (z1, z2))

(4.11)

× (V1 V2)

 |∂1F |2 ∂1F ∂2F

∂1F ∂2F |∂2F |2


(z1,z2)

V 1

V 2

 .

In view of Lemma 3.4/(b), (P − δH) is clearly plurisubharmonic ∀δ ∈ (0, 1). Fur-
thermore, note that, by the properties of h,

H ≥ 0 and H(z1, z2) = 0 ⇐⇒ F (z1, z2) = 0.

This establishes Part (2). �

5. The proof of Theorem 2.5

To avoid confusion resulting from subscripts, we shall write z := z1 and w := z2.
We shall also adopt several of the conventions and facts that feature in the proof of
Proposition 2.2. Accordingly, let us write

(5.1) Q(z, w) =
∑

α,β≥0

Cαβz
αz2p−αwβw2q−β,

As before, let us consider the complex lines Lζ := {(z = ζw,w) : w ∈ C} and
examine Q|Lζ . As in Proposition 2.2, we write

Q(ζw,w) =
∑

m+n=2(p+q)

 ∑
α+β=m

Cαβζ
αζ

2p−α

wmwn ≡
∑

m+n=2(p+q)

φmn(ζ)wmwn.

Recall from Proposition 2.2 that φp+q,p+q is a subharmonic function, φp+q,p+q ≥ 0,
and φp+q,p+q 6≡ 0. All of this implies that (note that φp+q,p+q is homogeneous)

0 <

∫ 2π

0
φp+q,p+q(eiθ)dθ = Cpq.

We have just concluded that in the expansion 5.1, the term |z|2p|w|2q occurs with a
positive coefficient. Let us thus decompose Q as

Q(z, w) = Cpq|z|2p|w|2q +R(z, w) ≡ A(z, w) +R(z, w).

Note that A is harmonic along the varieties Vc := {(z, w) ∈ C2 : zpwq = c}. Since,
generically in Vc, TC

(z,w)(Vc) = spanC[(qz,−pw)], we have

(5.2) LA((z, w); v) = 0 ∀v ∈ spanC[(qz,−pw)] and ∀(z, w) ∈ C2.

In other words, equation (5.2) holds true for every (z, w) ∈ C2, independent of the
variety Vc to which (z, w) belongs. By plurisubharmonicity of Q, we infer that

(5.3) LR((z, w); (qz,−pw)) ≥ 0 ∀(z, w) ∈ C2.
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Let us now write z = reiθ and w = seiτ . In this notation, we get

R(z, w) = |z|2p|w|2qT (θ, τ),

where T (θ, τ) :=
∑

(α,β) 6=(p,q)

Cαβe
i(2α−2p)θei(2β−2q)τ .(5.4)

It is a routine matter to check that

4
∂2

∂z∂z
=

∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂θ2

4
∂2

∂w∂w
=

∂2

∂s2
+

1
s

∂

∂s
+

1
s2

∂2

∂τ2

4
∂2

∂z∂w
= ei(τ−θ)

[
∂2

∂r∂s
+

1
rs

∂2

∂θ∂τ
− i

{
1
r

∂2

∂θ∂s
− 1
s

∂2

∂r∂τ

}]
Using these differential operators in the inequality (5.3) gives us

r2ps2q

× [q − p]

 4p2T + Tθθ 4pqT + Tθτ + i(2pTτ − 2qTθ)

4pqT + Tθτ − i(2pTτ − 2qTθ) 4q2T + Tττ

 q

−p


≥ 0 ∀r, s ≥ 0, ∀(θ, τ) ∈ [−π, π)× [−π, π).

Simplifying the above gives us

(q2Tθθ − 2pqTθτ + p2Tττ )(θ, τ)

=
(
q
∂

∂θ
− p

∂

∂τ

)(
q
∂

∂θ
− p

∂

∂τ

)
T (θ, τ) ≥ 0 ∀(θ, τ) ∈ [−π, π)× [−π, π).

The above inequality simply tells us that for every line on the θτ -plane having
tangent vector (q,−p), i.e. for every line `C := {(θ, τ) ∈ R2 : pθ + qτ = C},

T |`C is convex for each C ∈ R.

However, the definition of T in (5.4) above reveals that T is a real-analytic function
as well as 2π-periodic. For such a T to be convex, necessarily

T |`C ≡ const. for each line `C ⊂ R2.

Hence, T must have the form T (θ, τ) = G(pθ+ qτ), where G is a periodic function.
This means that T must have the form

(5.5) T (θ, τ) =
∑
M∈F

CMe
iM(pθ+qτ), CM 6= 0 ∀M ∈ F,

where F ⊂ Z is a finite subset of integers. Comparing (5.4) with (5.5), we infer that

(5.6) Cαβ 6= 0 =⇒ ∃M ∈ F such that
2α− 2p

p
= M =

2β − 2q
q

.

If we define d := gcd(α : Cαβ 6= 0), we can immediately infer the following facts:
• Since R is real-valued, Cα,β 6= 0 =⇒ C2p−α,2q−β 6= 0 — whence d|(2p − α)

for any α such that Cαβ 6= 0; and
• Owing to (5.6)

β0 ∈ {β : Cαβ 6= 0} ⇐⇒ ∃α0 ∈ {α : Cαβ 6= 0} such that β0 = qα0/p.
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Therefore D := gcd(β : Cαβ 6= 0) = qd/p, whence we can find a real-valued poly-
nomial r that is homogeneous of degree 2p/d such that R(z, w) = r(zdwD). Now
set

U(ξ) := Cpq|ξ|2p/d + r(ξ) ∀ξ ∈ C.
Clearly, Q(z, w) = U(zdwD). We compute the Levi-form of Q one last time. In the
process, we get

LQ((z, w); v)

= Uξξ̄(z
dwD)|z|2(d−1)|w|2(D−1) × (v1 v2)

 d2|w|2 Ddzw

Ddzw D2|z|2

 v1

v2

 ≥ 0

∀(z, w) ∈ C2, ∀v ∈ C2.

Hence,
(4U)(zdwD) ≥ 0 ∀(z, w) ∈ C2.

Since zdwD attains every value in C as (z, w) varies through C2, we infer that
4U ≥ 0, i.e. that U is subharmonic. This final fact completes the proof. �

6. Proofs of the Main Theorems

We are now ready to provide a proof of Main Theorem 2.6. The basic idea — i.e.
of examining the pullback of P by a suitable proper holomorphic map such that the
pullback is homogeneous — is a simple one. The following argument provides the
details.

6.1. The proof of Main Theorem 2.6. DefineK := lcm(m1,m2) (i.e. the least
common multiple of m1 and m2) and write σj := K/mj , j = 1, 2. Define the proper
holomorphic map Ψ : C2 −→ C2 by Ψ(z1, z2) := (zσ1

1 , zσ2
2 ), and write Q = P ◦Ψ. Fix

a point (z0
1 , z

0
2) ∈ C2 \ {(z1, z2) : z1z2 = 0}. Then, there exist neighbourhoods U j 3

z0
j such that the functions (ξ 7→ ξσj )|Uj are injective, j = 1, 2. Therefore Ψ|U1×U2

is a biholomorphism, whence Q|U1×U2 ∈ psh(U1 × U2). Since plurisubharmonicity
is a local property, we infer that Q ∈ psh(C2 \ {(z1, z2) : z1z2 = 0}). Finally, since
Q is smooth and {(z1, z2) : z1z2 = 0} is a pluripolar set, we infer that Q ∈ psh(C2).
Furthermore:

Q(t1/Kz1, t
1/Kz2) = P ((t1/Kz1)σ1 , (t1/Kz2)σ2) = tQ(z1, z2) ∀t > 0,

whence Q is a plurisubharmonic polynomial that is homogeneous of degree K. By
hypothesis, Q has no pluriharmonic terms. Furthermore, we observe that

m1

gcd(m1,m2)
= σ2,

m2

gcd(m1,m2)
= σ1,

and hence note that for any ζ ∈ C such that {(w1, w2) : wσ2
1 = ζwσ1

2 } ∈ E(P ), Q is
forced to be harmonic along each of the complex lines that make up the set

L(ζ) :=
σ1σ2−1⋃

l=0

{
(z1, z2) : z1 = |ζ|1/σ1σ2 exp

(
2πil + iArg(ζ)

σ1σ2

)
z2

}
(here Arg denotes some branch of the argument). But since, by Proposition 2.2,
there are only finitely many complex lines along which Q can be harmonic, this
implies Part (1) of our theorem.
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Now, let ζ1, . . . , ζN be as in Part (1) of the statement of this theorem. Suppose
there is some z0 6= 0 and a germ of a complex variety V 0 at z0 such that

V0 * L(ζj) ∀j = 1, . . . , N, and,(6.1)

V0 * {(z1, z2) : z2 = 0} if {(z1, z2) : z2 = 0} ∈ E(Q).

By assumption, we have the following situations for V 0:

Case (i) V 0 * {(z1, z2) : z1z2 = 0}
In this case, we can select a domain Ω ⊂ C2 such that

• Ω
⋂
{(z1, z2) : z1z2 = 0} = ∅ and Ψ|Ω is a biholomorphism;

• Ω
⋂
V 0 is a smooth subvariety of Ω; and

• we can find a regular parametrisation ϕ = (ϕ1, ϕ2) : D −→ (V 0
⋂

Ω) of
V 0
⋂

Ω.

Here, D denotes the open unit disc in C. We now compute that

4(P ◦Ψ ◦ ϕ)(ξ) = LP (Ψ ◦ ϕ(ξ);Ψ∗
∣∣
ϕ(ξ) (ϕ′(ξ)))

= LQ
(
ϕ(ξ);

(
Ψ−1

)
∗
∣∣
Ψ◦ϕ(ξ)

{
Ψ∗
∣∣
ϕ(ξ) (ϕ′(ξ))

})
= 4 (Q|V 0∩Ω) = 0,(6.2)

i.e., we conclude that P is harmonic along Ψ(V 0
⋂

Ω). Yet, by the assumption (6.1),
Ψ(V 0

⋂
Ω) is not contained in any curve belonging to E(P ). But this contradicts

the hypothesis that P has Property (A), whence this case cannot arise.

Case (ii) Either V 0 ⊂ {(z1, z2) : z1 = 0} or V 0 ⊂ {(z1, z2) : z2 = 0}.
A much simpler variant of the above argument shows us that these cases will not
arise depending on whether {(z1, z2) : z1 = 0} /∈ E(Q), or {(z1, z2) : z2 = 0} /∈ E(Q),
respectively.

We have therefore established the following fact:

Q is a plurisubharmonic polynomial that is homogeneous of degree K, and(6.3)

C(Q) = the set of all complex lines belonging to E(Q).

In fact, in view of the above fact, it is completely routine to infer that

P has Property (A) =⇒ Q has Property (A).

Now consider the unitary transformationsRlm : (z1, z2) −→ (e2πil/σ1z1, e
2πim/σ2z2)

and compute:

LQ(Rlm(z);Rlm(V )) = LP ◦Ψ
(
Rlm(z);Ψ∗

∣∣∣Rlm(z)) (RlnV )
)

=
(
σ1z

σ1−1
1 e−2πil/σ1(RlmV )1 σ2z

σ2−1
2 e−2πim/σ2(RlmV )2

)
× HC(P )|Ψ(Rlm(z))

(
σ1z

σ1−1
1 e2πil/σ1(RlmV )1

σ2z
σ2−1
2 e2πim/σ2(RlmV )2

)
= LP (Ψ(z);Ψ∗ |z (V ))

= LQ(z;V ).(6.4)
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So, if we define NQ(z) to be the null-space of LQ(z; ·), then the computation (6.4)
reveals that

(6.5) z ∈ ω(Q) and V ∈ NQ(z)

⇐⇒ Rlm(z) ∈ ω(Q) and Rlm(V ) ∈ NQ(Rlm(z)) ∀l,m : 1 ≤ l ≤ σ1, 1 ≤ m ≤ σ2.

In particular (6.5) implies that if, in the notation borrowed from the proof of Theo-
rem 2.3, we can find a constant αj > 0 and a Hj ∈ C∞(C2) that is homogeneous of
degree K such that

• Hj = 0 on Lj := {z : z1 = |ζj |1/σ1σ2 exp(iArg(ζj)/σ1σ2)z2},
• (Q − δHj) ∈ spsh[K(|ζj |1/σ1σ2 exp(iArg(ζj)/σ1σ2);αj) \ Lj ] for each δ : 0 <
δ ≤ 1,

then the above remains true with
• Hj replaced by H(lm)

j := Hj ◦ (Rlm)−1,
• Lj replaced by

L
(lm)
j :=

{
z : z1 = |ζj |1/σ1σ2 exp

(
2πi(σ1m− σ2l) + iArg(ζj)

σ1σ2

)
z2

}
,

• the cone K(|ζj |1/σ1σ2 exp(iArg(ζj)/σ1σ2);αj) is replaced by its image under
Rlm,

for any l,m : 1 ≤ 1 ≤ σ1, 1 ≤ m ≤ σ2.

Since Q has Property (A), Result 4.1 is applicable. A careful examination of its
proof reveals that Noell’s construction of the bumping is local. Then, in view of
(6.5) and the preceding discussion, we can — by selecting our cut-off functions in
Theorem 2.3 to be equivariant with respect to Rlm — construct our bumping H (of
the polynomial Q) to have the property

H(z1, z2) = H(e2πil/σ1z1, e
2πim/σ2z2) ∀z ∈ C2 and(6.6)

∀l,m : 1 ≤ 1 ≤ σ1, 1 ≤ m ≤ σ2.

Now define

G(z)

:=
1

σ1σ2

σ1∑
j=1

σ2∑
k=1

H

(
|z1|1/σ1 exp

(
2πij + iArg(z1)

σ1

)
, |z2|1/σ2 exp

(
2πik + iArg(z2)

σ2

))
.

Observe, however, that by the definition of Q, P satisfies

(6.7) P (z)

:=
1

σ1σ2

σ1∑
j=1

σ2∑
k=1

Q

(
|z1|1/σ1 exp

(
2πij + iArg(z1)

σ1

)
, |z2|1/σ2 exp

(
2πik + iArg(z2)

σ2

))
.

Let δ0 > 0 be as given by Theorem 2.3 applied to Q. Now, as in the beginning of
this proof, fix (z0

1 , z
0
2) ∈ C2 \{(z1, z2) : z1z2 = 0} and let U j 3 z0

j , j = 1, 2, be neigh-
bourhooods such that (ξ 7→ ξσj )|Uj are injective and such that (U1×U2)

⋂
{(z1, z2) :

z1z2 = 0} = ∅. Write V 1 × V 2 := Ψ(U1 × U2). Note that by the definition of G,
and by (6.6) and (6.7), we have

(P − δG)|V 1×V 2 = (Q− δH) ◦ (Ψ|U1×U2)−1 .
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Then, whenever 0 < δ ≤ δ0, we have the Levi-form computation

L(P − δG)(w;V ) = L(Q− δH)
(
(Ψ|U1×U2)−1(w);

(
(Ψ|U1×U2)−1

)
∗ |w (V )

)
≥ 0 ∀w ∈ V 1 × V 2, ∀V ∈ C2.

The above argument establishes that whenever 0 < δ ≤ δ0, (P − δG) ∈ psh[C2 \{w :
w1w2 = 0}]. Since (P − δG) ∈ C2(C2), we infer that (P − δG) ∈ psh(C2) by
exactly the same argument as in the first paragraph of this proof. Finally, given the
relationship between the sets

⋃N
j=1 L(ζj) and

⋃
C∈E(P )C, Part (2) follows. �

6.2. The proof of Main Theorem 2.7. We will re-use the ideas in the preced-
ing proof, but we shall be brief. Let H be as in the hypothesis of the theorem
and, as before, define M := the largest positive integer µ such that there exists
some g ∈ O(C2) and gµ = H. Define F by the relation FM = H. Our hypotheses
continue to hold when H is replaced by F and, by Lemma 3.3, F is (m1,m2)-
homogeneous. Let K (i.e. the least common multiple of m1 and m2), σ1, σ2, Q,
and the proper holomorphic map Ψ : C2 −→ C2 be exactly as in the proof of Main
Theorem 2.6. We recall, in particular, that:

Ψ(z1, z2) := (zσ1
1 , zσ2

2 ),
Q := P ◦Ψ.

And as before, Q is homogeneous of degree K.

Furthermore, if we define f := F ◦Ψ, we get:

(z1, z2) ∈ f−1{c}
⇒ Ψ−1{(z1, z2)} ⊂ F−1{c}

⇒ Q is harmonic along the smooth part of f−1{c}.

Furthermore, we leave the reader to verify that Q has no pluriharmonic terms.
Therefore, by applying Theorem 2.4, we obtain a homogeneous, subharmonic poly-
nomial U such that Q = U ◦ f . Let us write 2ν := deg(U). Recall that by ap-
plying Lemma 3.4 to this U to obtain the h as stated in that lemma, and defining
κ̃(z) := |z|deg(U)h(Arg(z)), we get

P − δ(κ̃ ◦ f) ∈ psh(C2) ∀δ : 0 < δ ≤ 1.(6.8)

(The above κ̃ ◦ f is precisely what we called H in Theorem 2.4.) It is clear
that P = U ◦ F . This establishes Part (1) of the theorem. The fact that F is
(m1,m2)-homogeneous with weight 1/2ν follows from degree considerations; since P
is (m1,m2)-homogeneous, F must be homogeneous with weight 1/deg(U) = 1/2ν.

Now define
G(z1, z2) := κ̃ ◦ F (z1, z2) ∀(z1, z2) ∈ C2.

By (6.8), and by a repetition of the argument in the second half of the last paragraph
of the proof of Main Theorem 2.6, we infer

Q− δG ∈ psh(C2) ∀δ : 0 < δ ≤ 1.

�
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