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Abstract. In this paper we introduce a new class of domains in complex Euclidean

space, called Goldilocks domains, and study their complex geometry. These domains

are defined in terms of a lower bound on how fast the Kobayashi metric grows and

an upper bound on how fast the Kobayashi distance grows as one approaches the

boundary. Strongly pseudoconvex domains and weakly pseudoconvex domains of finite

type always satisfy this Goldilocks condition, but we also present families of Goldilocks

domains that have low boundary regularity or have boundary points of infinite type.

We will show that the Kobayashi metric on these domains behaves, in some sense, like a

negatively curved Riemannian metric. In particular, it satisfies a visibility condition in

the sense of Eberlein and O’Neill. This behavior allows us to prove a variety of results

concerning boundary extension of maps and to establish Wolff–Denjoy theorems for a

wide collection of domains.

1. Introduction

Given a bounded domain Ω ⊂ Cd, let KΩ : Ω × Ω → R≥0 be the Kobayashi distance

and let kΩ : Ω × Cd → R≥0 be the infinitesimal Kobayashi metric (also known as the
Kobayashi–Royden metric). One aim of this paper is to present some new techniques —
which we shall use to study the behavior of holomorphic maps into a bounded domain
Ω — that arise from certain intuitions in metric geometry applied to the metric space
(Ω,KΩ). A class of domains that has been studied extensively in the literature is the class
of bounded pseudoconvex domains of finite type (which includes the class of bounded
strongly pseuodconvex domains). For such a domain Ω, there exist constants c, ε > 0 such
that

kΩ(x; v) ≥ c ‖v‖
δΩ(x)ε

for all x ∈ Ω and v ∈ Cd,

where δΩ(x) is the distance from x to ∂Ω (see [Cho92]; also see Section 2 for explanations).
Moreover, in this case, because ∂Ω has (at least) C2 regularity, it is easy to establish that
for each x0 ∈ Ω there exists a constant C > 0 (depending on x0) such that

KΩ(x0, x) ≤ C +
1

2
log

1

δΩ(x)
for all x ∈ Ω.

We shall show that similar bounds on the growth of kΩ and KΩ as one approaches the
boundary underlie a variety of results on the complex geometry and complex dynamics
associated to Ω (for any bounded domain Ω admitting such bounds).
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2 GOLDILOCKS DOMAINS, VISIBILITY, AND APPLICATIONS

To measure the growth rate of the Kobayashi metric as one approaches the boundary
we introduce the following function for a bounded domain Ω ⊂ Cd:

MΩ(r) := sup

{
1

kΩ(x; v)
: δΩ(x) ≤ r, ‖v‖ = 1

}
.

We are now in a position to define the following class of domains:

Definition 1.1. A bounded domain Ω ⊂ Cd is a Goldilocks domain if

(1) for some (hence any) ε > 0 we have∫ ε

0

1

r
MΩ (r) dr <∞,

(2) for each x0 ∈ Ω there exist constants C,α > 0 (that depend on x0) such that

KΩ(x0, x) ≤ C + α log
1

δΩ(x)

for all x ∈ Ω.

Remark 1.2. Given a bounded domain Ω, the function MΩ is clearly monotone decreasing,
hence is Lebesgue measurable. Thus, the integral in (1) of Definition 1.1 is well defined.

Remark 1.3. The slightly unusual phrase “Goldilocks domain” is intended to point to the
fact that if Ω is a Goldilocks domain, then ∂Ω lies in between (and avoids) the extremes
of having outward-pointing cusps and having points at which ∂Ω is flat to infinite order
and is, in a precise sense, too flat. A classical argument for planar domains, for instance,
implies that the first situation is ruled out by Condition 2 above. Condition 1, it turns out,
rules out domains that are not pseudoconvex: i.e., Goldilocks domain are pseudoconvex.
We discuss all this in more detail in Section 2.

We have deliberately chosen to define Goldilocks domains in rather abstract terms. One
objective of this work is to introduce methods that are rooted in metric geometry and are
applied to the metric space (Ω,KΩ). The crucial properties that animate these methods
are most clearly illustrated when working with domains that satisfy the conditions in
Definition 1.1.

One deduces from the first paragraph of this section that bounded pseudoconvex do-
mains of finite type are always Goldilocks domains. We shall see, in Section 2, a di-
verse range of other domains — described in more geometrically explicit terms — that are
Goldilocks domains. Consequently, we are able to establish, among several other results,
extensions of the following widely-studied phenomena:

• Wolff–Denjoy theorems in higher dimensions,
• continuous boundary-extension of proper holomorphic maps

to a new range of domains. To give a sense of the uses that the methods hinted at are put
to: a pseudoconvex domain Ω b Cd, d ≥ 2, of finite type is, in general, non-convex and
there may be points ξ ∈ ∂Ω around which Ω is not locally convexifiable. Such an Ω has
very little resemblance to a convex domain, yet a form of the Wolff–Denjoy theorem holds
on Ω — see Corollary 2.11.

We now introduce the main theorems of this paper.

1.1. Negative curvature and the Kobayashi metric. It is well known that the unit
ball B ⊂ Cd endowed with the Kobayashi metric is isometric to complex hyperbolic space,
which is a canonical example of a negatively curved Riemannian manifold. Based on this
example, it is natural to conjecture that domains that are similar to the unit ball also
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have a negatively curved Kobayashi metric. One problem with this conjecture is that
the infinitesimal Kobayashi metric on a general domain is not Riemannian and has low
regularity, making a notion of infinitesimal curvature difficult to define. One remedy to this
problem is to consider a coarse notion of negative curvature introduced by Gromov [Gro87]
which is now called Gromov hyperbolicity.

Along these lines Balogh and Bonk [BB00] proved that the Kobayashi distance on a
bounded strongly pseudoconvex domain is Gromov hyperbolic. The Kobayashi distance
is also Gromov hyperbolic for bounded convex domains whose boundary has finite type in
the sense of D’Angelo [Zim16].

We will show, in Section 2, some examples of Goldilocks domains where the Kobayashi
distance is not Gromov hyperbolic. However, a key part of this paper is to show that the
Kobayashi metric on a Goldilocks domain does have some negative-curvature-like behavior.
In particular we are motivated by a definition of Eberlein and O’Neill [EO73] who call a
non-positively curved simply connected Riemannian manifold X a visibility space if for
every two points ξ, η in the ideal boundary ∂X and neighborhoods Vξ, Vη of ξ, η in X∪∂X
so that Vξ ∩ Vη = ∅ there exists a compact set K ⊂ X with the following property: if
σ : [0, T ]→ X is a geodesic with σ(0) ∈ Vξ and σ(T ) ∈ Vη then σ∩K 6= ∅ (see also [BGS85,
page 54] or [BH99, page 294]). Informally, this states that geodesics between two distinct
points at infinity bend into the space.

It is well known that a complete negatively curved simply connected Riemannian man-
ifold X is always a visibility space and, more generally, a proper geodesic Gromov hyper-
bolic metric space always satisfies a visibility type condition (see for instance [BH99, page
428]).

In the context of a Goldilocks domain Ω, we do not know that the metric space (Ω,KΩ)
is Cauchy complete and in particular we do not know whether or not every two points can
be joined by a geodesic. This leads us to consider a more general class of curves which we
call almost-geodesics (defined in Section 4). We will then prove:

Theorem 1.4. (see Section 5) Suppose Ω ⊂ Cd is a Goldilocks domain and λ ≥ 1, κ ≥ 0.
If ξ, η ∈ ∂Ω and Vξ, Vη are neighborhoods of ξ, η in Ω so that Vξ ∩ Vη = ∅ then there exists
a compact set K ⊂ Ω with the following property: if σ : [0, T ] → Ω is an (λ, κ)-almost-
geodesic with σ(0) ∈ Vξ and σ(T ) ∈ Vη then σ ∩K 6= ∅.

This theorem makes intuitive sense: on a Goldilocks domain the Kobayashi metric
grows rapidly as one approaches the boundary and so length minimizing curves wish to
spend as little time as possible near the boundary. This leads to the phenomenon of such
curves bending into the domain and intersecting some fixed compact set. A key point
of this paper is giving a precise condition on the rate of blow-up, namely Definition 1.1,
which leads to this behavior.

There are several visibility type results in the literature. Chang, Hu, and Lee studied
the limits of complex geodesics in strongly convex domains and proved a visibility type
result for complex geodesics, see [CHL88, Section 2]. Mercer [Mer93a] extended these
results to m-convex domains, that is bounded convex domains Ω for which there exist
constants C > 0 and m > 0 such that

inf {‖x− ξ‖ : ξ ∈ ∂Ω ∩ (x+ C ·v)} ≤ CδΩ(x)1/m ∀x ∈ Ω and ∀v ∈ Cd \{0}. (1.1)

Notice that every strongly convex set is 2-convex. Finally, Karlsson [Kar05, Lemma 36]
proved a visibility result for geodesics in bounded domains Ω that satisfy estimate (1.1),
have Cauchy-complete Kobayashi metric, and have C1,α boundary.



4 GOLDILOCKS DOMAINS, VISIBILITY, AND APPLICATIONS

1.2. Continuous extensions of proper holomorphic maps. The earliest result on
the continuous extension up to the boundary of a proper holomorphic map between a pair
of domains D and Ω in Cd, d ≥ 2, with no other assumptions on the map, was established
by Pinčuk [Pin74]. In that work, the domains D and Ω are assumed to be strongly
pseudoconvex with C2 boundaries. Owing to strong pseudoconvexity, it is shown that
the continuous extension of the map from D to Ω satisfies a Hölder condition on D with
Hölder exponent 1/2. Soon thereafter, the focus of the question of boundary regularity of a
proper holomorphic map between a pair of domains of the same dimension shifted largely
to domains with C∞ boundaries, and to obtaining smooth extension to the boundary,
of the given proper map, largely due to various Bergman-kernel methods introduced by
Fefferman [Fef74] — who considered biholomorphisms — and by Bell–Ligocka [BL80] and
Bell [Bel81]. The literature on the smooth extension of proper holomorphic maps is truly
enormous, and we refer the interested reader to the survey [For93] by Forstnerič.

The latter methods are not helpful if the boundary of either of D or Ω has low regularity,
or if either domain is assumed to be merely pseudoconvex (i.e., without any finite-type
condition on the boundary). In this context, the methods of Diederich–Fornæss [DF79] are
helpful. The idea of using the Kobayashi metric was first introduced in [DF79, Theorem 1],
and, in that theorem, the requirement of strong pseudoconvexity of D in Pinčuk’s theorem
is dropped. In this paper, we generalize [DF79, Theorem 1] by allowing the target domain
to have non-smooth boundary. We point to Section 2 for a sense of how irregular ∂Ω,
for Ω as in Theorem 1.5 below, can be. One frequently encounters proper holomorphic
maps of smoothly-bounded domains whose images have non-smooth boundary; consider
the various examples of maps between Reinhardt domains. In the latter setting and in low
dimensions, continuous extension up to the boundary follows from an explicit description
of the proper map in question — see [IK06], for instance. Even in C2 though, establishing
such descriptions as in [IK06] is a highly technical effort. In contrast, the question of
continuous extension — and for a variety of boundary geometries for the target space — is
settled by the following theorem.

Theorem 1.5. (see Section 7) Let D and Ω be bounded domains in Cd. Suppose D
is pseudoconvex with C2-smooth boundary, and Ω is a Goldilocks domain satisfying an
interior-cone condition. Any proper holomorphic map F : D → Ω extends to a continuous
map on D.

We refer the reader to Section 2 for a definition of the interior-cone condition. This
cone condition on Ω above allows us to adapt certain ideas in [DF79]. Here is a sketch of
the proof: using a type of Hopf lemma, which is available due to the cone condition on Ω,
we first show that δΩ(F (z)) ≤ cδD(z)η for some c, η > 0. Now suppose ξ ∈ ∂D and ν(ξ) is
the inward-pointing normal ray, then the rapid growth of the Kobayashi metric is used to
show that the curve F (ξ+ tν(ξ)) does not oscillate very much as t↘ 0 and, in particular,
one obtains a continuous extension to ∂D. As in the Theorem 1.4 above, the key point is
to have the precise rate of blow-up necessary to obtain such behavior.

1.3. Continuous extensions of quasi-isometric embeddings. We can also prove con-
tinuous extensions of certain non-holomorphic maps between domains of different dimen-
sions. A map F : (X, dX) → (Y, dY ) between two metric spaces is called a (λ, κ)-quasi-
isometric embedding if there exist constants λ ≥ 1 and κ ≥ 0 so that

1

λ
dY (F (x1), F (x2))− κ ≤ dX(x1, x2) ≤ λdY (F (x1), F (x2)) + κ

for all x1, x2 ∈ X.
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There are two motivations for investigating continuous extensions of quasi-isometric em-
beddings. Our main motivation stems from Lempert’s theorem [Lem81] — and its gener-
alization to convex domains with non-smooth boundaries by Royden and Wong [RW83] —
which establish that there exist complex geodesics between any pair of points of a convex
domain in Cd, d ≥ 2. A complex geodesic of a domain Ω is a holomorphic map from ∆ (the
open unit disk in C) to Ω that is an isometric embedding of (∆,K∆) into (Ω,KΩ). It is
natural to ask whether a complex geodesic extends continuously up to ∂∆. This question
has been examined — beginning with Lempert’s result for strongly convex domains with
C3-smooth boundary [Lem81] — from various perspectives [Mer93a, Bha16, Zim17], but:

• a comprehensive answer to this question is still forthcoming;
• little is known in general, at present, for domains that are non-convex and admit

complex geodesics.

We ought to mention that all complex geodesics of the symmetric twofold product of
∆ (also known as the symmetrized bidisc) — which is not biholomorphic to any convex
domain; see [Cos04] — extend continuously up to ∂∆. This follows from the work of
Agler–Young [AY04] and Pflug–Zwonek [PZ05]. Those results rely heavily on the specific
properties of the symmetrized bidisc.

However, there is a general approach to answering this question. When (X, dX) is
a proper geodesic Gromov hyperbolic metric space, X has a natural boundary X(∞)
“at infinity”, and the set X ∪ X(∞) has a topology that makes it a compactification
of X (see Section 6 below for more details). One of the fundamental properties of this
compactification is the extension of quasi-isometries:

Result 1.6. (see for instance [BH99, Chapter III.H, Theorem 3.9]) Suppose (X, dX) and
(Y, dY ) are two proper geodesic Gromov hyperbolic metric spaces. Then any continuous

quasi-isometric embedding F : (X, dX) → (Y, dY ) extends to a continuous map F̃ : X ∪
X(∞)→ Y ∪ Y (∞).

It is very easy to see that (∆,K∆) is Gromov hyperbolic, with ∆(∞) = ∂∆. Thus, if one
could show that (Ω,KΩ) satisfies all the conditions in Result 1.6 and that Ω(∞) = ∂Ω —
where Ω is a domain that admits complex geodesics — then one would have an answer to
the above question.

However, by the main theorem of [Zim16], if Ω ⊂ Cd, d ≥ 2, is a smoothly bounded
convex domain having infinite-type points ξ ∈ ∂Ω (i.e., Tξ(∂Ω) has infinite order of contact
with ∂Ω along a complex direction in Tξ(∂Ω)) then (Ω,KΩ) is not Gromov hyperbolic.
Thus, approaches other than Result 1.6 are of interest. Independently of all this, it would
be interesting in itself to prove an analogue of Result 1.6 in which, working in the category
of domains in Cd, the Gromov-hyperbolicity assumption on either of (X, dX) or (Y, dY ) (or
both) is supplanted by a strictly weaker assumption by taking advantage of our knowledge
of the Kobayashi metric. The latter is further motivation for the following analogue of
Result 1.6:

Theorem 1.7. (see Theorem 6.5 below) Let D be a bounded domain in Ck and suppose

(D,KD) is a proper geodesic Gromov hyperbolic metric space. Let Ω ⊂ Cd be a Goldilocks
domain. If F : (D,KD)→ (Ω,KΩ) is a continuous quasi-isometric embedding, then there

exists a continuous extension F̃ : D ∪D(∞)→ Ω.

Remark 1.8.

(1) Our proof of Theorem 1.7 will follow from that of Theorem 6.5 below. Theorem 6.5
is much more general and the techniques used in its proof apply to a wide range
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of metric spaces (even with (D,KD) replaced by more general metric spaces) and
compactifications. However, we shall focus on domains in this paper.

(2) Theorem 1.7 and Theorem 6.5 both represent applications of visibility. A key step
of the proof is Proposition 6.6 below, where we establish a visibility result for
quasi-geodesics.

(3) If Ω is strongly pseudoconvex or convex with finite-type boundary, then (Ω,KΩ)
is a proper geodesic Gromov hyperbolic metric space: see [BB00] and [Zim16],
respectively. Hence in these cases, Theorem 1.7 follows directly from Result 1.6.
However, proving that the Kobayashi metric is Gromov hyperbolic in either case
is very involved, and our approach of using a visibility condition is much more
direct.

Going back to our initial motivation for Theorem 1.7: it follows from this theorem
that if ϕ : ∆ → Ω is a complex geodesic into a Goldilocks domain, then ϕ extends to a
continuous map ϕ̃ : ∆ → Ω. This, in fact, extends known results to the case when Ω is
not necessarily convex. We refer the reader to subsection 2.3 below.

1.4. Wolff–Denjoy Theorems. There has been considerable interest in understanding
the behavior of iterates of a holomorphic map f : Ω→ Ω on a bounded domain Ω. Since
Ω is bounded, for any subsequence ni → ∞ one can always find a subsequence nij → ∞
so that fnij converges locally uniformly to a holomorphic map F : Ω → Ω. The general
goal is to show that the behavior of each convergent subsequence is identical. This is
demonstrated in the classical Wolff–Denjoy theorem:

Result 1.9 ([Den26, Wol26]). Suppose f : ∆→ ∆ is a holomorphic map then either:

(1) f has a fixed point in ∆; or
(2) there exists a point ξ ∈ ∂∆ so that

lim
n→∞

fn(x) = ξ

for any x ∈ ∆, this convergence being uniform on compact subsets of ∆.

The above result was extended to the unit (Euclidean) ball in Cd, for all d, by Hervé
[Her63]. It was further generalized by Abate — see [Aba88] or [Aba89, Chapter 4] —
to strongly convex domains. The above theorem was later generalized to contractible
strongly pseudoconvex domains by Hua [Hua94] and to a variety of different types of convex
domains (see for instance [AR14] and the references therein). Wolff–Denjoy theorems are
also known to hold on certain metric spaces where a boundary at infinity replaces the
topological boundary, see for instance [Kar01] or [Bea97].

Using the visibility result, we will prove two Wolff–Denjoy theorems for Goldilocks
domains. The first theorem concerns holomorphic maps on taut Goldilocks domains while
the second theorem considers maps that are 1-Lipschitz with respect to the Kobayashi
distance and Goldilocks domains Ω for which (Ω,KΩ) Cauchy complete. Since every
holomorphic map is 1-Lipschitz with respect to the Kobayashi distance, our second theorem
considers a more general class of maps. On the other hand, because whenever (Ω,KΩ) is
Cauchy complete the domain Ω is taut, our first theorem considers more a general class
of domains.

It is not hard to see that the dichotomy presented by Result 1.9 fails in general if the
domain in question is not contractible. The following theorems present the dichotomy
relevant to more general circumstances. Here are the precise statements:

Theorem 1.10. (see Section 8 below) Suppose Ω ⊂ Cd is a taut Goldilocks domain. If
f : Ω→ Ω is a holomorphic map then either:
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(1) for any x ∈ Ω the orbit {fn(x) : n ∈ N} is relatively compact in Ω; or
(2) there exists ξ ∈ ∂Ω so that

lim
n→∞

fn(x) = ξ

for any x ∈ Ω, this convergence being uniform on compact subsets of Ω.

Theorem 1.11. (see Section 8 below) Suppose Ω ⊂ Cd is a Goldilocks domain such that
(Ω,KΩ) is Cauchy complete. If f : Ω → Ω is 1-Lipschitz with respect to the Kobayashi
distance then either:

(1) for any x ∈ Ω the orbit {fn(x) : n ∈ N} is relatively compact in Ω; or
(2) there exists ξ ∈ ∂Ω so that

lim
n→∞

fn(x) = ξ

for any x ∈ Ω, this convergence being uniform on compact subsets of Ω.

The assumption of Cauchy completeness of (Ω,KΩ) provides tools, namely work of
Ca lka [Ca l84], that do not have analogues in the taut setting. In particular, the proof of
Theorem 1.10 is much more intricate than the proof of Theorem 1.11. However, tautness is
a rather mild condition: for instance a bounded pseudoconvex domain with C1 boundary
is known to be taut [KR81] (whereas it is unknown whether (Ω,KΩ) is Cauchy complete if

Ω is a weakly pseudoconvex domain of finite type in Cd, d > 2). This allows one to state
various types of corollaries of Theorem 1.10 — for instance, see Corollary 2.11 below.

1.5. Basic notations. We end the introduction by fixing some very basic notations.

(1) For z ∈ Cd, ‖z‖ will denote the standard Euclidean norm and, for z1, z2 ∈ Cd,
dEuc(z1, z2) = ‖z1 − z2‖ will denote the standard Euclidean distance.

(2) ∆ ⊂ C will denote the open unit disk, and ρ∆ will denote the Poincaré metric on
∆.

(3) For a point z ∈ Cd and r > 0, Br(z) will denote the open Euclidean ball with
center z and radius r.

Acknowledgments. Gautam Bharali is supported in part by a Swarnajayanti Fellowship
(Grant No. DST/SJF/MSA-02/2013-14) and by a UGC Centre for Advanced Study grant.
Andrew Zimmer is partially supported by the National Science Foundation under Grant
No. NSF 1400919.

2. Examples and corollaries

In this section we shall present certain broad classes of bounded domains — described
in terms of rather explicit boundary properties — under which either Condition 1 or Con-
dition 2 in the definition of a Goldilocks domain (i.e., Definition 1.1) is satisfied. Conse-
quently, we shall see that Definition 1.1 admits a truly wide range of bounded domains.

2.1. Domains that satisfy Condition 2. Lemma 2.3 below establishes that a simple
property, which arises in several areas in analysis, ensures that any domain with this
property satisfies Condition 2. We require a couple of definitions.

Definition 2.1. An open right circular cone with aperture θ is an open subset of Cd of
the form

{z ∈ Cd : Re[ 〈z, v〉 ] > cos(θ/2) ‖z‖} =: Γ(v, θ),
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where v is some unit vector in Cd, θ ∈ (0, π), and 〈· , ·〉 is the standard Hermitian inner

product on Cd. For any point p ∈ Cd, the axis of the (translated) cone p + Γ(v, θ) is the
ray {p+ tv : t > 0}.

Definition 2.2. Let Ω be a bounded domain in Cd. We say that Ω satisfies an interior-
cone condition with aperture θ if there exist constants r0 > 0, θ ∈ (0, π), and a compact
subset K ⊂ Ω such that for each x ∈ Ω \K, there exist a point ξx ∈ ∂Ω and a unit vector
vx such that

• x lies on the axis of the cone ξx + Γ(vx, θ), and
• (ξx + Γ(vx, θ)) ∩Br0(ξx) ⊂ Ω.

We say that Ω satisfies an interior-cone condition if there exists a θ ∈ (0, π) so that Ω
satisfies an interior-cone condition with aperture θ.

The proof of the following statement involves a mild adaptation of a technique used in
[FR87, Proposition 2.5] and in [Mer93a, Proposition 2.3].

Lemma 2.3. Let Ω be a bounded domain in Cd that satisfies an interior-cone condition
with aperture θ. Then Ω satisfies Condition 2 in the definition of a Goldilocks domain.

Proof. For any β > 1, define the holomorphic map ψβ : ∆→ C by

ψβ(ζ) := (1 + ζ)1/β .

Given a unit vector v ∈ Cd and a number r > 0, define the holomorphic map Ψ(· ; β, v, r) :

∆→ Cd by

Ψ(ζ;β, v, r) := rψβ(ζ)v,

and denote the image of Ψ(· ; β, v, r) by L(β, v, r).
It is an elementary calculation that there exist constants R > 0 and α > 1 such that

Rψα(∆) ⊂ {ζ ∈ C : Re(ζ) > cos(θ/2)|ζ|} ∩ {ζ ∈ C : |ζ| < r0},

where θ and r0 are as given by Definition 2.2. It follows from this, owing to our condition
on Ω, that:

(•) There exists a compact subset K ′ such that K ⊂ K ′ ⊂ Ω and such that for each
x ∈ Ω \K ′, there exist a point ξx ∈ ∂Ω and a unit vector vx so that
(i) ξx + L(α, vx, R) ⊂ Ω;

(ii) x lies on the line segment joining ξx to ξx + Ψ(0;α, v,R) =: qx; and
(iii) qx ∈ K ′.

Then, for x ∈ Ω \K ′, there exists a unique number t(x) > 0 such that ξx + t(x)vx = x.
Clearly δΩ(x) ≤ t(x). Also, Ψ(· ; α, v,R) maps the point(

(t(x)/R)α − 1
)
∈ (−1, 0)

to the point x.
Fix x0 ∈ Ω. It suffices to establish the inequality that defines Condition 2 for x ∈ K ′.

Set C1 := sup{KΩ(z, x0) : z ∈ K ′}. Then, by (•), if x ∈ Ω \K ′, then

KΩ(x0, x) ≤ KΩ(x0, qx) +KΩ(qx, x) ≤ C1 + ρ∆(0, (t(x)/R)α − 1)

= C1 + ρ∆(0, 1− (t(x)/R)α)

≤ C1 +
1

2
log

(
2

(t(x)/R)α

)
≤
(
C1 + (1/2) log(2Rα)

)
+ (α/2) log

1

δΩ(x)
.
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Hence, Ω satisfies Condition 2. �

This gives us the following:

Corollary 2.4. Let Ω1 and Ω2 be two convex Goldilocks domains in Cd having non-empty
intersection. Then Ω1 ∩ Ω2 is also a Goldilocks domain.

Proof. Write D = Ω1 ∩ Ω2. Since D is a convex domain, it satisfies an interior-cone
condition with aperture θ for some θ ∈ (0, π). Thus, by Lemma 2.3, D satisfies Condition 2.

Since D ⊂ Ωj , j = 1, 2, we have

kD(x; v) ≥ kΩj (x; v) ∀x ∈ D, ∀v : ‖v‖ = 1, and j = 1, 2. (2.1)

Fix an r > 0. Then

{x ∈ D : δD(x) ≤ r}
⊆ {x ∈ D : δΩ1

(x) ≤ r} ∪ {x ∈ D : δΩ2
(x) ≤ r} ≡ S(1, r) ∪ S(2, r).

Thus, by (2.1), we can estimate:

MD(r) ≤ sup
(S(1,r)∪S(2,r))×{‖v‖=1}

1

kD(x; v)

= max
[

sup
S(1,r)×{‖v‖=1}

1

kD(x; v)
, sup
S(2,r)×{‖v‖=1}

1

kD(x; v)

]
≤ max

(
MΩ1

(r),MΩ2
(r)
)
.

Now, MD, being monotone increasing, is Lebesgue measurable. Since MΩ1 and MΩ2 satisfy
the inequality that defines Condition 1, the above estimate ensures that MD does so too.
Thus, D satisfies Condition 1. Hence, D is a Goldilocks domain. �

2.2. Domains that satisfy Condition 1. In looking for domains that satisfy Condi-
tion 1, we shall examine two classes of domains with very different degrees of boundary
smoothness. Let us first examine a class of domains with C∞-smooth boundaries. In this
connection, we need the following result.

Result 2.5 (Cho, [Cho92]). Let Ω be a bounded domain in Cd, let ∂Ω∩U be smooth and
pseudoconvex, where U is a neighborhood of a point ξ0 ∈ ∂Ω, and let ∂Ω be of finite 1-type
in the sense of D’Angelo at ξ0. Then there exist a neighborhood V ⊂ U of ξ0 and constants
c, ε > 0 such that for every z ∈ Ω ∩ V and for every v ∈ Cd,

kΩ(z; v) ≥ c ‖v‖
δΩ(z)ε

.

The following is now straightforward.

Lemma 2.6. Let Ω be a bounded pseudoconvex domain of finite type. Then Ω satisfies
Condition 1 in the definition of a Goldilocks domain.

Proof. By the above result, and owing to our hypothesis, we can find finitely many con-
nected open sets V1, . . . , VN that cover ∂Ω and constants ε1, . . . , εN such that

kΩ(z; v) ≥ cδΩ(z)−εj

for every z ∈ Ω∩ Vj and for every unit vector v, where c > 0 is a suitable constant. Write
s := min(ε1, . . . , εN ). Then, for r > 0 so small that r < 1 and

{z ∈ Ω : δΩ(z) ≤ r} ⊂ V1 ∪ · · · ∪ VN ,

we have MΩ(r) ≤ (1/c)rs, s > 0, whence Condition 1 is satisfied. �
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The second family of domains that we shall consider will be bounded convex domains.
As has been emphasized in Section 1, we would like to consider domains Ω such that, at
any smooth point ξ ∈ ∂Ω, the boundary is allowed to osculate Hξ(∂Ω) := Tξ(∂Ω)∩iTξ(∂Ω)
to infinite order and, yet, are not necessarily smoothly bounded. One needs a device to
quantify how flat ∂Ω can get at smooth points. This is accomplished by the notion of the
support of Ω from the outside, which was introduced in [Bha16]. The following definition
has been adapted from [Bha16] — which focuses on domains with C1-smooth boundary —
to admit convex domains with non-smooth boundaries as well. (Augmenting our notation

somewhat, we shall write Bkr (z) to denote the open Euclidean ball in Ck with center z
and radius r.)

Definition 2.7. Let Ω be a bounded convex domain in Cd, d ≥ 2. Let F : Bd−1
r (0)→ R

be a C1-smooth convex function with F (0) = 0 and DF (0) = 0. We say that F supports
Ω from the outside if there exists a constant R ∈ (0, r) such that, for each point ξ ∈ ∂Ω,
there exists a unitary transformation Uξ so that

• the set
(
ξ + U−1

ξ ({v ∈ Cd : vd = 0})
)

is a supporting complex hyperplane of Ω at
ξ, and
• the line

(
ξ + U−1

ξ (spanR{(0, . . . , 0, i)})
)

intersects Ω,

and such that, denoting the C-affine map v 7−→Uξ(v − ξ) as Uξ, we have

Uξ(Ω) ∩
(
Bd−1
R (0)×∆

)
⊂ {z = (z′, zd) ∈ Bd−1

R (0)×∆ : Im(zd) ≥ F (z′)}.

This notion allows us to describe another family of domains that satisfy Condition 1.
However, to do so, we will need the following result.

Result 2.8 (Graham, [Gra90, Gra91]). Let Ω be a bounded convex domain in Cd. For

each z ∈ Ω and v ∈ Cd \{0}, define

rΩ(z; v) := sup
{
r > 0 :

(
z + (r∆)

v

‖v‖

)
⊂ Ω

}
,

Then:
‖v‖

2rΩ(z; v)
≤ kΩ(z; v) ≤ ‖v‖

rΩ(z; v)
∀z ∈ Ω and ∀v ∈ Cd \{0}. (2.2)

The lower bound on kΩ(z; v) is the non-trivial part of the result and a proof can also be
found in [Fra91, Theorem 2.2].

Lemma 2.9. Let Ω be a bounded convex domain in Cd, d ≥ 2. Let Ψ : [0, r) → R be a
convex, strictly increasing C1 function such that∫ ε

0

t−1Ψ−1(t) dt <∞

(where ε > 0 is small enough for Ψ−1 to be defined). Assume that Ω is supported from

the outside by F (z′) := Ψ( ‖z′‖ ) (write z = (z′, zd) for each z ∈ Cd). Then Ω satisfies
Condition 1 in the definition of a Goldilocks domain.

Proof. Let R be as given by Definition 2.7 with F = Ψ( ‖·‖ ). Let C := supt∈[0,R) Ψ(t) and

define t0 as follows (it is easy to argue that the set on the right is finite):

t0 := min
[
{C/2} ∪ {t ∈ (0, C) : t = Ψ−1(t)}

]
. (2.3)

Let us define

M := {(z′, zd) ∈ Bd−1
r (0)× C : Im(zn) = Ψ( ‖z′‖ )}.
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Let z ∈ Ω and let ξ(z) ∈ ∂Ω be such that δΩ(z) = dEuc(z, ξ(z)). Clearly

ξ(z) ∈ ∂BδΩ(z)(z), and ∂Ω ∩BδΩ(z)(z) = ∅,

whence BδΩ(z)(z) ⊂ Ω. Thus, for any (d − 1)-dimensional complex subspace E such that
E 6= Hξ(z)(∂BδΩ(z)(z)), the C-affine subspace (ξ(z) + E) intersects BδΩ(z)(z), and hence
intersects Ω. Therefore, at any point ξ ∈ ∂Ω that is of the form ξ(z) for some z ∈ Ω, there
is a unique supporting complex hyperplane of Ω at ξ. So we can find a compact subset K
of Ω such that whenever z ∈ Ω \K,

• δΩ(z) < min(1, t0); and
• For any point ξ(z) ∈ ∂Ω that satisfies δΩ(z) = dEuc(z, ξ(z)), given any vector
v 6= 0 parallel to the supporting complex hyperplane of Ω at ξ(z), the complex
line of the form Uξ(z)(z + C v) satisfies

Uξ(z)(z + C v) = (0, . . . , 0, i · δΩ(z)) + CUξ(z)(v)

and intersects M in a circle of radius Ψ−1(δΩ(z)).

Here Uξ(z) is as described in Definition 2.7. From this point we can argue as in the proof
of [Bha16, Lemma 3.2], mutatis mutandis, to get

rΩ(z; v) ≤ 2Ψ−1(δΩ(z))

for each z ∈ Ω \ K and v ∈ Cd \{0} (the purpose of t0 given by (2.3) is to ensure that
δΩ(z) is in the domain of Ψ−1 and that δΩ(z) ≤ Ψ−1(δΩ(z)) for the aforementioned z).

Therefore, from (2.2), we deduce that

1

kΩ(z; v)
≤ 4Ψ−1(δΩ(z))

for each z ∈ Ω \K and v ∈ Cd such that ‖v‖ = 1. Therefore, writing ε∗ := minz∈K δΩ(z),
we have

MΩ(t) ≤ 4Ψ−1(t) for t < ε∗

(by construction, 0 < ε∗ ≤ ε). Hence, by hypothesis, Ω satisfies Condition 1. �

Remark 2.10. The last lemma expresses quantitatively the claim that, for a convex domain
Ω b Cd that satisfies Condition 1, ∂Ω is allowed to osculate Hξ(∂Ω) to infinite order at
a smooth point ξ ∈ ∂Ω. The function Ψ in Lemma 2.9 also gives a sufficient condition on
the extent to which the boundary of Ω must bend at a point ξ ∈ ∂Ω of infinite type for
Condition 1 to hold. We illustrate all this via a familiar family of functions on [0,∞) that
vanish to infinite order at 0: these are the functions Ψs, s > 0:

Ψs(t) :=

{
e−1/ts , if t > 0,

0, if t = 0.

The description of the range of s for which∫ 1

0

t−1Ψ−1
s (t) dt =

∫ 1

0

t−1
(

log(1/t)
)−1/s

dt <∞

is a standard result; Ψs (restricted to a suitably small interval) satisfies the conditions of
the above lemma if and only if 0 < s < 1.
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2.3. Implications for holomorphic mappings. We shall now reformulate some of the
results stated in Section 1 for the domains discussed in subsections 2.1 and 2.2 and compare
these results to the state of the art for certain problems of continuing interest.

Recall the works cited in subsection 1.4 in connection with Wolff–Denjoy-type theorems
in higher dimensions. All of the results in those works that concern the study of the iterates
of a fixed-point-free holomorphic self-map on a domain, and the conclusion that this entire
sequence converges locally uniformly to a constant map, involve a domain Ω b Cd that:

• is topologically contractible; and
• is such that ∂Ω satisfies some non-degeneracy condition: some form of strict con-

vexity in [Aba88, Bud12, AR14]; strong pseudoconvexity in [Hua94].

Call the limit point (which lies in ∂Ω) appearing in all of the Wolff–Denjoy-type results
just cited a Wolff point. Now, it is not hard to see that an attempt to extend the dichotomy
presented by the classical Wolff–Denjoy theorem (i.e., Result 1.9 above) to higher dimen-
sions will fail if the domain in question is not contractible. Nevertheless, it would be
interesting if — making reasonable assumptions on the domain Ω, but without assuming
contractibility — there were to be a dichotomy wherein one of the possibilities is that the
entire sequence of iterates of a holomorphic self-map of Ω converges locally uniformly to
a Wolff point. In this circumstance, Theorem 1.10 presents the right dichotomy.

It would be even more interesting if the latter dichotomy could be exhibited for weakly
pseudoconvex domains: almost none of the methods in [Hua94] is usable if the domain
in question is a non-convex weakly pseudoconvex domain, even if it is of finite type. A
bounded pseudoconvex domain with C1 boundary is taut; see [KR81]. Thus, in view of
Lemma 2.3 and the discussion in subsections 2.1 & 2.2, Theorem 1.10 gives us:

Corollary 2.11. Let Ω ⊂ Cd be a bounded pseudoconvex domain of finite type. If f : Ω→
Ω is a holomorphic map then either:

(1) for any x ∈ Ω the orbit {fn(x) : n ∈ N} is relatively compact in Ω; or
(2) there exists ξ ∈ ∂Ω such that

lim
n→∞

fn(x) = ξ

for any x ∈ Ω, this convergence being uniform on compact subsets of Ω.

Remark 2.12. Karlsson gave a proof of the above Corollary with the additional assumption
that (Ω,KΩ) is Cauchy complete [Kar05, Theorem 3]. This assumption greatly simplifies
the situation.

The discussion in subsection 1.3 allows us to improve upon what is currently known
about the continuous extension of of a complex geodesic ϕ : ∆ → Ω up to ∂∆, where Ω
is any domain that admits complex geodesics. By Royden–Wong [RW83], for any pair of

points of a bounded convex domain Ω ⊂ Cd, d ≥ 2 — with no constraint on the regularity
of ∂Ω — there exists a complex geodesic of Ω containing these two points. Lempert [Lem84]

has shown an analogous result for strongly linearly convex domains in Cd with C∞-smooth
boundary. The result has been proved in [Lem84] for domains with real-analytic boundary,
but the arguments therein can be adapted to the smooth case; also see [KW13]. We refer
the reader to [Lem84] or [KW13] for a definition of strong linear convexity. It follows
from the discussion on smoothly-bounded Hartogs domains in [APS04, Chapter 2] that
strongly linearly convex domains need not necessarily be convex. Recently, Pflug and
Zwonek [PZ12] provided explicit examples of strongly linearly convex domains that are
not even biholomorphic to any convex domain. However, a strongly linearly convex domain
is always strongly pseudoconvex; see [APS04, Propositions 2.1.8 and 2.5.9].
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In the works cited in subsection 1.3 in connection with boundary regularity of complex
geodesics, the domains considered were convex domains with boundaries having some
degree of smoothness. Owing to Theorem 1.7 we are able to extend those results to
certain convex domains with non-smooth boundary. In [Lem84], Lempert showed that
in a strongly linearly convex domain with real-analytic boundary, all complex geodesics
extend real-analytically to ∂∆. However, this has a difficult and technical proof, and the
proof of even C1/2 extension is hard. The analogous result for strongly linearly convex
domains with C∞ boundary is expected to have an even more technical proof. In contrast,
in the C∞ setting our methods provide a rather “soft” proof of the continuous extension
of complex geodesics up to ∂∆. To be more precise: owing to Theorem 1.7, the discussion
in subsections 2.1 & 2.2, and the fact that (∆, ρ∆) is Gromov hyperbolic, the following
corollary is immediate:

Corollary 2.13. Let Ω ⊂ Cd, d ≥ 2, be a bounded domain having either one of the
following properties:

(1) Ω is a convex Goldilocks domain (for instance, Ω is a domain of finite type, or
satisfies the conditions in Lemma 2.9); or

(2) Ω is a smoothly bounded strongly linearly convex domain.

Then every complex geodesic ϕ : ∆→ Ω extends to a continuous map ϕ̃ : ∆→ Ω.

2.4. Goldilocks domains are pseudoconvex. All the classes of domains presented
above were examples of pseudoconvex domains. This is no coincidence: as hinted at in
Remark 1.3, Goldilocks domains are necessarily pseudoconvex. We shall now present a
proof of this. To do so, we refer to a classical result:

Result 2.14. A domain Ω ⊂ Cd, d ≥ 2, is pseudoconvex if and only if for any continuous
family of analytic discs — i.e., any continuous map Φ : ∆ × [0, 1] → Cd such that ϕt :=
Φ(·, t)|∆ is holomorphic for each t ∈ [0, 1] — that satisfies Φ(∆ × {0} ∪ ∂∆ × [0, 1]) ⊂ Ω,
it follows that ϕt(∆) ⊂ Ω for each t ∈ [0, 1].

It is known, and can be ascertained by working through each step of the proof of
Result 2.14 that, in this result, it suffices to consider special continuous families of analytic
discs for which:

(a) each ϕt, t ∈ [0, 1], is a holomorphic immersion of ∆ into C; and
(b) there exists a constant c > 0 such that ‖ϕ′t(ζ)‖ > c for every (ζ, t) ∈ ∆× [0, 1].

The above can be deduced, for instance, using an intermediate characterization for pseu-
doconvex domains involving the so-called Hartogs figures — see, for instance, Chapter II,
§1 of the book [FG02] by Fritzsche–Grauert. Since we do not require pseudoconvexity of
Goldilocks domains in any of our proofs, we shall not elaborate on the above point any
further. With this we can give a proof.

Proposition 2.15. If Ω ⊂ Cd is a Goldilocks domain, then Ω is pseudoconvex.

Proof. Since planar domains are pseudoconvex, we consider the case d ≥ 2. Let Ω ⊂ Cd,
d ≥ 2, be a bounded domain. Suppose Ω is not pseudoconvex. There exists a continuous
family of analytic discs Φ : ∆ × [0, 1] → Cd satisfying the hypothesis of Result 2.14 and
conditions (a) and (b), but such that the conclusion of Result 2.14 fails. Let

τ := inf{t ∈ (0, 1] : ϕt(∆) 6⊂ Ω}.

As Ω is not pseudoconvex, and as the condition ϕt(∆) ⊂ Ω is an open condition, τ ∈ (0, 1].
By definition, there exists a point ξ ∈ ∂Ω and a point ζ0 ∈ ∆ such that ϕτ (ζ0) = ξ. For
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ν ∈ Z+ so large that (τ − 1/ν) ∈ (0, τ), write zν := ϕτ−(1/ν)(ζ0). By the continuity Φ,

zν → ξ as ν → +∞. (2.4)

Let vν be a unit vector such that ϕ′τ−(1/ν)(ζ0) ∈ Cvν . By the definition of the infinitesimal

Kobayashi metric (owing to which it is contracted by holomorphic maps), we have

kΩ(zν ; vν) =
kΩ(ϕτ−(1/ν)(ζ0); ϕ′τ−(1/ν)(ζ0))

‖ϕ′τ−(1/ν)(ζ0)‖
≤ k∆(ζ0; 1)

‖ϕ′τ−(1/ν)(ζ0)‖

=
1

‖ϕ′τ−(1/ν)(ζ0)‖(1− |ζ0|2)

≤ 1/c(1− |ζ0|2).

Owing to (2.4) we conclude that there is an ε > 0 such that MΩ(r) ≥ c(1 − |ζ0|2) for
any r ∈ (0, ε). But this implies that Condition 1 in Definition 1.1 does nor hold in Ω. In
particular, Ω is not a Goldilocks domain — which establishes the result. �

3. Preliminaries

3.1. The Kobayashi distance and metric. Let Ω ⊂ Cd be a domain. We assume that
the reader is familiar with the definitions of the Kobayashi pseudo-distance KΩ and the
Kobayashi–Royden pseudo-metric kΩ on Ω. It turns out that KΩ is the integrated form of
kΩ, but this is a result stemming from the definitions of KΩ and kΩ; see Result 3.1 below.
Since we shall require the original definition of KΩ in a few arguments below, we give this
definition. Given points x, y ∈ Ω, we define

KΩ(x, y) := inf

{
n∑
i=1

ρ∆(ζi−1, ζi) : (φ1, . . . , φn; ζ0, . . . , ζn) ∈ A(x, y)

}
where A(x, y) is the set of all analytic chains in Ω joining x to y. Here, (φ1, . . . , φn; ζ0, . . . , ζn)
is an analytic chain in Ω joining x to y if φi ∈ Hol(∆,Ω) for each i,

x =φ1(ζ0), φn(ζn) = y, and

φi(ζi) = φi+1(ζi)

for i = 1, . . . n− 1.
Now suppose Ω ⊂ Cd is a bounded domain. In that case, the Kobayashi pseudo-distance

is a true distance and the Kobayashi–Royden pseudo-metric is a metric. Royden [Roy71,
Proposition 3] proved that the function kΩ is upper-semicontinuous. So if a path σ :

[a, b] → Ω is absolutely continuous (as a map [a, b] → Cd) then the function [a, b] 3 t 7→
kΩ(σ(t);σ′(t)) is integrable and we can define the length of σ to be

`Ω(σ) =

∫ b

a

kΩ(σ(t);σ′(t))dt.

The Kobayashi metric has the following connections to the Kobayashi distance:

Result 3.1. Let Ω ⊂ Cd be a bounded domain.

(1) [NP08, Theorem 1(ii)] Suppose, for a point x ∈ Ω, kΩ(x; ·) is continuous and

positive on Cd \{0}. Then

kΩ(x; v) = lim
h→0

1

|h|
KΩ(x, x+ hv).



GOLDILOCKS DOMAINS, VISIBILITY, AND APPLICATIONS 15

(2) [Roy71, Theorem 1] For any x, y ∈ Ω we have

KΩ(x, y) = inf
{
`Ω(σ) : σ : [a, b]→ Ω is piecewise C1,

with σ(a) = x, and σ(b) = y} .

(3) [Ven89, Theorem 3.1] For any x, y ∈ Ω we have

KΩ(x, y) = inf {`Ω(σ) : σ : [a, b]→ Ω is absolutely continuous,

with σ(a) = x, and σ(b) = y} .

Remark 3.2. The first result above is a weaker version — which suffices for our purposes —
of a result by Nikolov and Pflug [NP08]. Among other things, their result holds true on
complex manifolds.

3.2. The Hopf–Rinow theorem. Given a metric space (X, d), the length of a continuous
curve σ : [a, b]→ X is defined to be

Ld(σ) = sup

{
n∑
i=1

d(σ(ti−1), σ(ti)) : a = t0 < t2 < · · · < tn = b

}
.

Then the induced metric dI on X is defined to be

dI(x, y) = inf {Ld(σ) : σ : [a, b]→ X is continuous, σ(a) = x, and σ(b) = y} .

When dI = d, the metric space (X, d) is called a length metric space. When the Kobayashi
pseudo-distance is actually a distance, then the metric space (Ω,KΩ) is a length metric
space (by construction). For such metric spaces we have the following characterization of
Cauchy completeness:

Result 3.3 (Hopf–Rinow). Suppose (X, d) is a length metric space. Then the following
are equivalent:

(1) (X, d) is a proper metric space; that is, every bounded set is relatively compact.
(2) (X, d) is Cauchy complete and locally compact.

For a proof see, for instance, Proposition 3.7 and Corollary 3.8 in Chapter I of [BH99].

When Ω ⊂ Cd is a bounded domain the Kobayashi distance generates the standard
topology on Ω and so the metric space (Ω,KΩ) is locally compact. In particular we
obtain:

Result 3.4. Suppose Ω ⊂ Cd is a bounded domain. Then the following are equivalent:

(1) Ω,KΩ) is a proper metric space; that is, every bounded set is relatively compact.
(2) (Ω,KΩ) is Cauchy complete.

3.3. Lipschitz continuity of the Kobayashi distance and metric. We begin with
a simple proposition. Since we shall re-use some aspects of the proof elsewhere in this
paper, and the proof itself is short, we provide a proof.

Proposition 3.5. Suppose Ω ⊂ Cd is bounded domain.

(1) There exists c1 > 0 so that

c1 ‖v‖ ≤ kΩ(x; v)

for all x ∈ Ω and v ∈ Cd. In particular,

c1 ‖x− y‖ ≤ KΩ(x, y)

for all x, y ∈ Ω.
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(2) For any compact set K ⊂ Ω there exists C1 = C1(K) > 0 so that

kΩ(x; v) ≤ C1 ‖v‖

for all x ∈ K and v ∈ Cd.
(3) For any compact set K ⊂ Ω there exists C2 = C2(K) > 0 so that

KΩ(x, y) ≤ C2 ‖x− y‖

for x, y ∈ K.

Proof. Fix R > 0 so that Ω is relatively compact in BR(0). Then

c1 := inf
x∈Ω,‖v‖=1

kBR(0)(x; v)

‖v‖
≤ inf
x∈Ω,‖v‖=1

kΩ(x; v)

‖v‖
.

The continuity of

BR(0)× Cd 3 (x, v) 7→ kBR(0)(x; v)

implies that c1 > 0. Thus

kΩ(x; v) ≥ c1 ‖v‖

for all x ∈ Ω and v ∈ Cd. Then, it follows from part (2) of Result 3.1 that

KΩ(x, y) ≥ c1 ‖x− y‖

for all x, y ∈ Ω. This establishes part (1).
Next fix a compact set K ⊂ Ω. Then there exists r > 0 so that B2r(x) ⊂ Ω for all

x ∈ K. Then

kΩ(x; v) ≤ 1

2r
‖v‖ ∀x ∈ K and ∀v ∈ Cd . (3.1)

So part (2) is true. Now, since B2r(x) ⊂ Ω for all x ∈ K, we see that

KΩ(x, y) ≤ KB2r(x)(x, y) ≤ 1

r
‖x− y‖

when x ∈ K and y ∈ Br(x). Now let

M := sup{KΩ(x, y) : x, y ∈ K}.

By the continuity of KΩ we see that M <∞. Then

KΩ(x, y) ≤ max

{
1

r
,
M

r

}
‖x− y‖

for all x, y ∈ K. This establishes part (3). �

4. Length minimizing curves

Suppose Ω ⊂ Cd is a bounded domain. If I ⊂ R is an interval, a map σ : I → Ω is
called a real geodesic if

KΩ(σ(s), σ(t)) = |t− s|

for all s, t ∈ I. By Result 3.1, for any two points x, y ∈ Ω there exists a sequence of curves
joining x and y whose lengths approach KΩ(x, y). However, for a general bounded domain
the metric space (Ω,KΩ) may not be Cauchy complete and thus there is no guarantee that
this sequence of curves has a convergent subsequence. In particular, it is not clear if every
two points in Ω are joined by a real geodesic. This possibility of non-existence motivates
the next definition:
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Definition 4.1. Suppose Ω ⊂ Cd is a bounded domain and I ⊂ R is an interval. For
λ ≥ 1 and κ ≥ 0 a curve σ : I → Ω is called an (λ, κ)-almost-geodesic if

(1) for all s, t ∈ I
1

λ
|t− s| − κ ≤ KΩ(σ(s), σ(t)) ≤ λ |t− s|+ κ;

(2) σ is absolutely continuous (whence σ′(t) exists for almost every t ∈ I), and for
almost every t ∈ I

kΩ(σ(t);σ′(t)) ≤ λ.

In Proposition 4.4 below, we will show for any bounded domain Ω any two points
x, y ∈ Ω can be joined by an (1, κ)-almost-geodesic.

Remark 4.2. For many domains inward pointing normal lines can be parametrized as (1, κ)-
almost geodesics: for convex domains with C1,α boundary this follows from [Zim17, Propo-
sition 4.3] and for strongly pseudo-convex domains this follows from estimates in [FR87].

Proposition 4.3. Suppose Ω ⊂ Cd is a bounded domain. For any λ ≥ 1 there exists a
C = C(λ) > 0 so that any (λ, κ)-almost-geodesic σ : I → Ω is C-Lipschitz (with respect to
the Euclidean distance).

Proof. By Proposition 3.5 there exists c1 > 0 so that

kΩ(x; v) ≥ c1 ‖v‖

for all x ∈ Ω and v ∈ Cd. We claim that every (λ, κ)-almost-geodesic is λ/c1-Lipschitz
(with respect to the Euclidean distance).

Suppose that σ : I → Ω is an (λ, κ)-almost-geodesic. Then for almost every t ∈ I we
have

‖σ′(t)‖ ≤ 1

c1
kΩ(σ(t);σ′(t)) ≤ λ

c1
.

Since σ is absolutely continuous we have

σ(t) = σ(s) +

∫ t

s

σ′(r)dr.

Thus

‖σ(t)− σ(s)‖ =

∥∥∥∥∫ t

s

σ′(r)dr

∥∥∥∥ ≤ λ

c1
|t− s|

and σ is λ/c1-Lipschitz. �

Proposition 4.4. Suppose Ω ⊂ Cd is a bounded domain. For any κ > 0 and x, y ∈ Ω
there exists an (1, κ)-almost-geodesic σ : [a, b]→ Ω with σ(a) = x and σ(b) = y.

We begin the proof with a simple lemma:

Lemma 4.5. Suppose Ω ⊂ Cd is a bounded domain and σ : [a, b] → Ω is an absolutely
continuous curve. If

`Ω(σ) ≤ KΩ(σ(a), σ(b)) + ε

then whenever a ≤ a′ ≤ b′ ≤ b we have

`Ω(σ|[a′,b′]) ≤ KΩ(σ(a′), σ(b′)) + ε.
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This lemma is an immediate consequence of the fact that

`Ω(σ|[a′,b′]) = `Ω(σ)− `Ω(σ|[a,a′])− `Ω(σ|[b′,b]),
and of the triangle inequality for KΩ.

The proof of Proposition 4.4. By part (2) of Result 3.1 there exists a piecewise C1 curve
σ : [0, T ]→ Ω so that σ(0) = x, σ(T ) = y, and

`Ω(σ) < KΩ(x, y) + κ.

Since kΩ is upper semi-continuous, we can perturb σ and assume, in addition, that σ is
C1-smooth, and that σ′(t) 6= 0 for all t ∈ [0, T ].

Next consider the function

f(t) =

∫ t

0

kΩ(σ(s);σ′(s))ds.

Since σ([0, T ]) is compact, by Proposition 3.5 there exists C ≥ 1 so that

1

C
‖σ′(t)‖ ≤ kΩ(σ(t), σ′(t)) ≤ C ‖σ′(t)‖ for all t ∈ [0, T ]. (4.1)

Thus, since σ′(t) 6= 0 for all t ∈ [0, T ], we see that f is a bi-Lipschitz strictly increasing
function.

Next let g : [0, `Ω(σ)] → [0, T ] be the inverse of f , that is f(g(t)) = t for all t ∈ [0, T ].
We claim that the curve σ0 := σ ◦ g is an (1, κ)-almost-geodesic. Since g is Lipschitz (f
is bi-Lipschitz) we see that σ0 is Lipschitz and hence absolutely continuous. Moreover, if
g′(t) exists then

σ′0(t) = σ′(g(t))g′(t).

When g′(t) exists and f ′(g(t)) exists and is non-zero, we have

g′(t) =
1

f ′(g(t))
.

Now, by the Lebesgue differentiation theorem applied to f , there exists a set E ⊂ [0, T ]
of full measure so that if s ∈ E then f ′(s) exists and

f ′(s) = kΩ(σ(s);σ′(s)).

Since g is bi-Lipschitz, g−1(E) ⊂ [0, `Ω(σ)] has full measure. Hence, as σ′(t) 6= 0 for all
t ∈ [0, T ], we can write (in view of (4.1) above)

g′(t) =
1

kΩ(σ(g(t));σ′(g(t)))

for almost every t ∈ [0, `Ω(σ)]. So for almost every t ∈ [0, lΩ(σ)]

kΩ(σ0(t);σ′0(t)) = kΩ

(
σ(g(t));σ′(g(t))g′(t)

)
= 1.

Therefore

`Ω(σ0) = `Ω(σ) ≤ KΩ(x, y) + κ.

So, by Lemma 4.5, whenever 0 ≤ s ≤ t ≤ `Ω(σ) we have

|t− s| = `Ω(σ0|[s,t]) ≤ KΩ(σ0(t), σ0(s)) + κ.

Since σ0 is absolutely continuous, Result 3.1 implies that

KΩ(σ0(t), σ0(s)) ≤ `Ω(σ0|[s,t]) = |t− s| .

So σ0 is an (1, κ)-almost-geodesic. �
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4.1. Real geodesics. In this subsection we show that when Ω is a taut bounded domain,
then any real geodesic must possess a certain degree of extra regularity: namely, that it
is an (1, 0)-almost-geodesic.

Proposition 4.6. Suppose Ω ⊂ Cd is a bounded domain. Then there exists CΩ > 0 so
that any real geodesic σ : I → Ω is CΩ-Lipschitz (with respect to the Euclidean distance).
In particular

σ(t) = σ(t0) +

∫ t

t0

σ′(s)ds (4.2)

for any t, t0 ∈ I. Moreover, if Ω is taut then

KΩ(σ(t);σ′(t)) = 1

for almost every t ∈ I.

Proof. By Proposition 3.5 there exists c > 0 so that

KΩ(x, y) ≥ c ‖x− y‖
for all x, y ∈ Ω. Then

‖σ(t)− σ(s)‖ ≤ 1

c
|t− s| .

Thus σ is Lipschitz (and 1/c is the CΩ mentioned above). In particular, σ is absolutely
continuous, from which (4.2) follows.

Next suppose that Ω is taut. We now appeal to Theorem 1.2 in [Ven89]. Since Ω is a
taut and bounded domain, kΩ is continuous; see, for instance, [JP93, Section 3.5]. Hence
the conditions stated in part (1) of Result 3.1 are satisfied. Thus, in our specific context,
[Ven89, Theorem 1.2] reads as∫ t+h

t

kΩ(σ(s);σ′(s))ds = sup
P

N(P)∑
j=1

KΩ(σ(sj−1), σ(sj))

where the supremum above ranges over all partitions

P : t = s0 < s1 < s2 < · · · < sN(P) = t+ h

of [t, t+h], and where h > 0 is such that t, t+h ∈ I. As σ is a real geodesic, we then have∫ t+h

t

kΩ(σ(s);σ′(s))ds = h

for all h > 0 such that t, t+ h ∈ I. Then by the Lebesque differentiation theorem

kΩ(σ(t);σ′(t)) = 1

for almost every t ∈ I.
�

4.2. Quasi-geodesics. In this subsection, we show that any quasi-geodesic can, in a
certain sense, be approximated by an almost-geodesic. This proposition will be needed in
our proof of continuous extension of isometries.

Definition 4.7. Suppose Ω ⊂ Cd is a bounded domain and I ⊂ R is a interval. For λ ≥ 1,
κ ≥ 0 a map σ : I → Ω is called a (λ, κ)-quasi-geodesic if

1

λ
|t− s| − κ ≤ KΩ(σ(s), σ(t)) ≤ λ |t− s|+ κ

for all s, t ∈ I.
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Remark 4.8. Note that a (λ, κ)-quasi-geodesic is not required to be continuous. It is in this
sense that it differs from an (λ, κ)-almost-geodesic, which must have greater regularity;
see Definition 4.1. Furthermore, we ought to remark that the proposition below makes no
assertions about existence of quasi-geodesics. Also, while Proposition 4.4 asserts that any
pair of points of a bounded domain Ω ⊂ Cd can be joined by an (1, κ)-almost-geodesic —
which is more regular than a (1, κ)-quasi-geodesic — this comes with the proviso that κ > 0.

Proposition 4.9. Suppose Ω ⊂ Cd is a bounded domain. For any λ ≥ 1, κ ≥ 0 there
exist constants R > 0, λ0 ≥ 1, and κ0 ≥ 0, depending only on the pair (λ, κ), that
have the following property: for any (λ, κ)-quasi-geodesic σ : [a, b] → Ω there exists an
(λ0, κ0)-almost-geodesic S : [0, T ]→ Ω with S(0) = σ(a), S(T ) = σ(b), and such that

max

{
sup
t∈[a,b]

KΩ(σ(t), S), sup
t∈[0,T ]

KΩ(S(t), σ)

}
≤ R.

Here, given a set E ⊂ Ω and a point o ∈ Ω, we write KΩ(o,E) := infx∈E KΩ(o, x).

Proof. The argument falls into two cases, depending on the magnitude of |b− a|. The case
that requires some work is when |b− a| is large.

Case 1: First consider the case when |b− a| > 1/2. Fix a partition

a = t0 < t1 < t2 < · · · < tN = b

so that 1/2 ≤ |tk − tk−1| ≤ 1. For 1 ≤ k ≤ N , let γk : [0, Tk] → Ω be an (1, 1)-almost-
geodesic with γk(0) = σ(tk−1) and γk(Tk) = σ(tk); notice that such a curve exists by
Proposition 4.4.

Now, by the properties of γk we get

Tk − 1 ≤ KΩ(γk(0), γk(Tk)) = KΩ(σ(tk−1), σ(tk)) ≤ λ |tk − tk−1|+ κ ≤ λ+ κ,

whence Tk ≤ λ+ κ+ 1, k = 1, . . . , N . Therefore,

KΩ(γk(t), σ(tk−1)) = KΩ(γk(t), γk(0)) ≤ |t|+ 1

≤ Tk + 1 ≤ λ+ κ+ 2

for any t ∈ [0, Tk].
Let S : [a, b]→ Ω be the curve defined as follows:

S(t) = γk

(
Tk

tk − tk−1
(t− tk−1)

)
, if tk−1 ≤ t ≤ tk, k = 1, . . . , N.

Then, using the estimate above, for t ∈ [tk−1, tk] we have

KΩ(S(t), σ(t)) ≤ KΩ(S(t), σ(tk−1)) +KΩ(σ(tk−1), σ(t))

≤ λ+ κ+ 2 + λ |tk−1 − t|+ κ

≤ 2λ+ 2κ+ 2.

Write R := 2λ+ 2κ+ 2. Then

|KΩ(S(t), S(s))−KΩ(σ(t), σ(s))| ≤ KΩ(S(t), σ(t)) +KΩ(S(s), σ(s)) ≤ 2R

and so
1

λ
|t− s| − κ− 2R ≤ KΩ(S(t), S(s)) ≤ λ |t− s|+ κ+ 2R.

Finally since each γk is an (1, 1)-almost-geodesic we see that

kΩ(S(t);S′(t)) ≤ max
1≤k≤N

Tk
tk+1 − tk

≤ 2λ+ 2κ+ 2
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for almost every t ∈ [a, b].
Thus S : [a, b] → Ω is an (λ0, κ0)-almost-geodesic where λ0 = 2λ + 2κ + 2 and κ0 =

κ+ 2R = 4λ+ 5κ+ 4.

Case 2: Now consider the case when |b− a| ≤ 1/2. Let S : [0, T ]→ Ω be an (1, 1)-almost-
geodesic with S(0) = σ(a) and S(T ) = σ(b). Arguing as before shows that

T ≤ λ

2
+ κ+ 2.

Now if t ∈ [a, b] then

KΩ(σ(t), S(0)) = KΩ(σ(t), σ(0)) ≤ λ

2
+ κ

and if t ∈ [0, T ] then

KΩ(S(t), σ(0)) = KΩ(S(t), S(0)) ≤ T + 1 ≤ λ

2
+ κ+ 3.

�

5. A visibility condition

This section is dedicated to proving Theorem 1.4. It is a key part of the present work.
What makes Theorem 1.4 a key part of the proofs in the later sections is that, if Ω is a
Goldilocks domain, (Ω,KΩ) resembles adequately a visibility space (in the sense of [EO73],
for instance) even though (Ω,KΩ) is not in general Gromov hyperbolic, nor is it known
whether every pair of points can be joined by a geodesic.

We will need the following simple observation:

Observation 5.1. Suppose f : R≥0 → R≥0 is a bounded Lebesgue-measurable function
such that ∫ ε

0

1

r
f(r)dr <∞

for some (and hence any) ε > 0. Then∫ ∞
0

f(Ae−Bt)dt <∞

for any A,B > 0.

This is an immediate consequence of the change-of-variable formula, writing r = Ae−Bt

in the second integral above.

The proof of Theorem 1.4. Suppose that there does not exist a compact set with the de-
sired property. Then we can find a sequence σn : [an, bn] → Ω of (λ, κ)-almost-geodesics
so that σn(an) ∈ Vξ, σn(bn) ∈ Vη, and

0 = lim
n→∞

max{δΩ(σn(t)) : t ∈ [an, bn]}.

By reparametrizing each σn we can assume that

δΩ(σn(0)) = max{δΩ(σn(t)) : t ∈ [an, bn]}.

Then by passing to a subsequence we can assume an → a ∈ [−∞, 0], bn → b ∈ [0,∞],
σn(an)→ ξ′, and σn(bn)→ η′. By assumption ξ′ ∈ Vξ ∩∂Ω and η′ ∈ Vη ∩∂Ω. Notice that

ξ′ 6= η′ because Vξ ∩ Vη = ∅.
By Proposition 4.3, there exists some C > 0 so that each σn is C-Lipschitz with respect

to the Euclidean distance. Thus we can pass to another subsequence so that σn converges
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locally uniformly on (a, b) to a curve σ : (a, b)→ Ω (we restrict to the open interval because
a could be −∞ and b could be ∞). Notice that a 6= b because each σn is C-Lipschitz and
so

0 < ‖ξ′ − η′‖ ≤ C |b− a| .

Since σn is an (λ, κ)-almost-geodesic

kΩ(σn(t);σ′n(t)) ≤ λ

for almost every t ∈ [an, bn]. We claim that:

‖σ′n(t)‖ ≤ λMΩ(δΩ(σn(t))) for almost every t ∈ [an, bn]. (5.1)

In the case when σ′n(t) = 0 this is immediate and if σ′n(t) 6= 0 we have

‖σ′n(t)‖ ≤ λ

kΩ

(
σn(t); 1

‖σ′
n(t)‖σ

′(t)
) ≤ λMΩ(δΩ(σn(t))).

Claim 1: σ : (a, b)→ Ω is a constant map.
Proof. Since

δΩ(σn(t)) ≤ δΩ(σn(0))

we see that

MΩ(δΩ(σn(t))) ≤MΩ(δΩ(σn(0))).

Thus MΩ(δΩ(σn(t)))→ 0 uniformly. But then if u ≤ w and u,w ∈ (a, b)

‖σ(u)− σ(w)‖ = lim
n→∞

‖σn(u)− σn(w)‖ ≤ lim sup
n→∞

∫ w

u

‖σ′n(t)‖ dt

≤ λ lim sup
n→∞

∫ w

u

MΩ(δΩ(σn(t)))dt = 0.

Thus σ is constant. J

We will establish a contradiction by proving the following:

Claim 2: σ : (a, b)→ Ω is not a constant map.
Proof. Fix x0 ∈ Ω. Then there exists C,α > 0 so that

KΩ(x, x0) ≤ C + α log
1

δΩ(z)

for all x ∈ Ω. Therefore

1

λ
|t| − κ ≤ KΩ(σn(0), σn(t)) ≤ KΩ(σn(0), x0) +KΩ(x0, σn(t))

≤ 2C + α log
1

δΩ(σn(0))δΩ(σn(t))
.

Thus

δΩ(σn(t)) ≤
√
δΩ(σn(0))δΩ(σn(t)) ≤ Ae−B|t|

where A = e(2C+κ)/(2α) and B = 1/(2αλ).
Thus, by the estimate (5.1), for almost every t ∈ [an, bn] we have

‖σ′n(t)‖ ≤ λMΩ(δΩ(σn(t))) ≤ λMΩ(Ae−B|t|)
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Now fix a′, b′ ∈ (a, b) so that

‖ξ′ − η′‖ > λ

∫ a′

a

MΩ(Ae−B|t|)dt+ λ

∫ b

b′
MΩ(Ae−B|t|)dt.

Then

‖σ(b′)− σ(a′)‖ = lim
n→∞

‖σn(b′)− σn(a′)‖

≥ lim
n→∞

(
‖σn(bn)− σn(an)‖ − ‖σn(bn)− σn(b′)‖ − ‖σn(a′)− σn(an)‖

)
≥ ‖ξ′ − η′‖ − lim sup

n→∞

∫ bn

b′
‖σ′n(t)‖ dt− lim sup

n→∞

∫ a′

a

‖σ′n(t)‖ dt

≥ ‖ξ′ − η′‖ − lim sup
n→∞

λ

∫ bn

b′
MΩ(Ae−B|t|)dt− lim sup

n→∞
λ

∫ a′

an

MΩ(Ae−B|t|)dt

= ‖ξ′ − η′‖ − λ
∫ b

b′
MΩ(Ae−B|t|)dt− λ

∫ a′

a

MΩ(Ae−B|t|)dt > 0.

Thus σ : (a, b)→ Ω is non-constant. J

The above contradicts Claim 1. This establishes the existence of the compact K with
the stated property. �

6. Extensions of quasi-isometries

6.1. The Gromov boundary. Let (X, d) be a metric space. Given three points x, y, o ∈
X, the Gromov product is given by

(x|y)o =
1

2
(d(x, o) + d(o, y)− d(x, y)) .

When (X, d) is proper and Gromov hyperbolic, the Gromov product can be used to define
an abstract boundary at infinity denoted X(∞) and called the Gromov boundary. In
particular, a seqeunce (xn)n∈N ⊂ X is said to converge at ∞ if

lim inf
n,m→∞

(xn|xm)o =∞

for some (and hence) any o ∈ X. Two sequences (xn)n∈N and (yn)n∈N in X are equivalent
if

lim inf
n,m→∞

(xn|ym)o =∞

for some (and hence) any o ∈ X. Finally X(∞) is the set of equivalence classes of sequences
converging to infinity. Moreover, X∪X(∞) has a natural topology (see for instance [BH99,
Part III.H.3]) that makes it a compactification of X.

6.2. Continuous extensions of quasi-isometries. Given a bounded domain Ω ⊂ Cd,
it is, in general, very hard to determine whether (Ω,KΩ) is Gromov hyperbolic. Fur-
thermore, as we saw in subsection 1.3, KΩ fails to be Gromov hyperbolic for domains as
regular as convex domains with C∞-smooth boundary if ∂Ω has points of infinite type; see
[Zim16]. This renders unusable a very natural approach, namely Result 1.6, for studying
the boundary behavior of continuous quasi-isometries (for the Kobayashi metric), even
if they are holomorphic, on such domains. We therefore explore alternative notions of
good compactifications — from the viewpoint of obtaining continuous extensions of quasi-
isometries — of (Ω,KΩ). To this end, we begin with a couple of very general definitions.
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Definition 6.1. Let (X, d) be a metric space. A pair (ι,X∗) is a compactification of X if
X∗ is a sequentially compact Hausdorff topological space, ι : X → X∗ is a homeomorphism
onto its image, and ι(X) is open and dense in X∗.

Definition 6.2. Suppose (ι,X∗) is a compactification of a geodesic metric space (X, d).
We say (ι,X∗) is a good compactification if for all sequences σn : [an, bn]→ X of geodesics
with the property

lim
n→∞

ι(σn(an)) = lim
m→∞

ι(σn(bn)) ∈ X∗ \ ι(X)

we have

lim inf
n→∞

d(o, σn) =∞

for any o ∈ X.

To clarify our notation: if σ : [0, T ]→ X is a map and o ∈ X, d(o, σ) := inf{d(o, σ(s)) :
s ∈ [0, T ]}.

As the next observation shows, good compactifications only exist for proper metric
spaces:

Observation 6.3. Suppose (ι,X∗) is a good compactification of a metric space (X, d).
Then (X, d) is a proper metric space.

Proof. Fix R > 0 and x0 ∈ X. We claim that the set B := {y ∈ X : d(y, x0) ≤ R} is
compact. To see this, fix a sequence xn ∈ B. Since X∗ is sequentially compact we can
assume, passing to a subsequence if necessary, that ι(xn)→ ξ ∈ X∗. If ξ ∈ X, then ξ ∈ B.
If ξ ∈ X∗ \ ι(X) then the curve σn : [0, 0]→ X given by σn(0) = xn is a geodesic. So, by
the definition of a good compactification,

∞ = lim inf
n→∞

d(x0, σn) = lim inf
n→∞

d(x0, xn) ≤ R,

which is a contradiction, whence ξ /∈ X∗ \ ι(X). �

Remark 6.4. We now discuss a few examples and look at some motivations underlying
Definition 6.2.

(1) Let X∗ = Rd ∪{∞} be the one point compactification of (Rd, dEuc), then X∗ is
not a good compactification.

(2) In view of Theorem 6.5 below, it would be desirable if the Gromov compactification
X ∪ X(∞), where (X, d) is a proper geodesic Gromov hyperbolic space, were
subsumed by Definition 6.2. This is in fact the case by Result 1.6.

(3) Let Ω be a bounded convex domain with C1,α-smooth boundary and assume that
for each ξ ∈ ∂Ω, the affine set ξ + Hξ(∂Ω) (see subsection 2.2 for the definition)

intersects Ω precisely at ξ. It is a classical fact that (Ω,KΩ) is Cauchy complete,
see for instance [Aba89, Proposition 2.3.45]. It then follows that (Ω,KΩ) is a
geodesic metric space. If ∂Ω contains points that are not of finite type (in the
sense of D’Angelo), then (Ω,KΩ) is not Gromov hyperbolic; see [Zim16]. Yet, ir-
respective of whether or not (Ω,KΩ) is Gromov hyperbolic, it follows from [Zim17,
Theorem 2.11] that (idΩ,Ω) is a good compactification.

The next theorem could be stated for any geodesic metric space (X, d) that admits a
good compactification (ι,X∗) and any quasi-isometric embedding F : (X, d) → (Ω,KΩ).
However, it is unclear what the interest in such a general set-up could be. On the other
hand, we have seen in the discussion in subsection 1.3 that quasi-isometric embeddings —
relative to the Kobayashi metric — between domains arise rather naturally, while existing
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tools for studying their boundary are no longer effective. These are the considerations be-
hind the statement about quasi-isometries between two domains in Theorem 6.5. Observe
that Theorem 1.7 is a special case of Theorem 6.5.

Theorem 6.5. Let D be a bounded domain in Ck and suppose (D,KD) admits a good

compactification (ι,D∗). Let Ω ⊂ Cd be a Goldilocks domain. If F : (D,KD) → (Ω,KΩ)
is a continuous quasi-isometric embedding, then F extends to a continuous map from D∗

to Ω.

The following lemma is the key to proving Theorem 6.5. Its proof follows immediately
from Theorem 1.4 and Proposition 4.9.

Proposition 6.6. Suppose Ω ⊂ Cd is a Goldilocks domain and λ ≥ 1, κ ≥ 0. If ξ, η ∈ ∂Ω
and Vξ, Vη are neighborhoods of ξ, η in Ω so that Vξ ∩ Vη = ∅, then for each x0 ∈ Ω there
exists R > 0 with the following property: if σ : [a, b] → Ω is a (λ, κ)-quasi-geodesic with
σ(a) ∈ Vξ and σ(b) ∈ Vη then

KΩ(x0, σ) ≤ R.

Remark 6.7. If (Ω,KΩ) is Cauchy complete then the conclusion of Theorem 1.4 and
Proposition 6.6 are equivalent (by Result 3.4). But in general, Proposition 6.6 is weaker.
This is due to the following hypothetical example: suppose there exists two sequences
xn → ξ ∈ ∂Ω and yn → η ∈ ∂Ω so that

sup
n∈N

KΩ(xn, x0) = R1 <∞ and sup
n∈N

KΩ(yn, x0) = R2 <∞.

Then the sequence of maps σn : [0, 1]→ Ω given by

σn(t) =

{
xn if 0 ≤ t < 1/2
yn if 1/2 ≤ t ≤ 1.

are all (1, R1 +R2 + 1)-quasi-geodesics. But

lim
n→∞

(
max

t∈[an,bn]
δΩ(σn(t))

)
= 0.

Theorem 6.5 is an application of Theorem 1.4, with Proposition 6.6 serving as a visi-
bility theorem for quasi-geodesics. In fact, visibility may be seen as a tool for controlling
the oscillation of F (F as in Theorem 6.5) along various sequences (xn)n∈N ⊂ D as ι(xn)
approaches some chosen point in ξ ∈ D∗ \ ι(D). The idea of the proof is as follows. If the
cluster set of values as one approaches ξ were non-trivial, we would have two sequences
(xn)n∈N and (yn)n∈N as above such that (F (xn))n∈N and (F (yn))n∈N approach two differ-
ent points in ∂Ω. Let σn be a geodesic joining xn to yn. Then F ◦ σn are quasi-geodesics,
whence, by Proposition 6.6, these curves must be within some finite Kobayashi distance
from any chosen point in Ω. But then the curves σn would have the analogous property
in D, which is ruled out by the geometry of D.

The proof of Theorem 6.5. Fix some ξ ∈ D∗ \ ι(D). We claim that limι(x)→ξ F (x) exists

and is in ∂Ω. Fix a sequence (xn)n∈N ⊂ D so that ι(xn)→ ξ. Since Ω is compact we can
assume, passing to a subsequence if necessary, that F (xn) converges to some η ∈ Ω. Fix
a point x0 ∈ D. Since ι(xn)→ ξ ∈ D∗ \ ι(D) and (D,KD) is proper we see that

lim
n→∞

KD(xn, x0) =∞.

Then, since F is a quasi-isometric embedding,

lim
n→∞

KΩ(F (xn), F (x0)) =∞.
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Thus η ∈ ∂Ω. Now we claim that

lim
ι(x)→ξ

F (x) = η.

If not, then we would have a sequence yn ∈ D so that ι(yn) → ξ, F (yn) → η′, and
η 6= η′. Let σn : [0, Tn] → D be a geodesic with σn(0) = xn and σn(Tn) = yn. Then
(F ◦ σn) : [0, Tn]→ Ω is a quasi-geodesic and since η 6= η′, Proposition 6.6 implies that

max
n∈N

KΩ(F (x0), F ◦ σn) <∞.

But since F is a quasi-isometric embedding this implies that

max
n∈N

KD(x0, σn) <∞.

This contradicts the fact that (ι,D∗) is a good compactification. Thus for any ξ ∈ D∗\ι(D)

lim
ι(x)→ξ

F (x)

exists and is in ∂Ω.
Next define the map F̃ : D∗ → Ω by

F̃ (ξ) =

{
F (ι−1(ξ)), if ξ ∈ ι(D),

limι(x)→ξ F (x), if ξ ∈ D∗ \ ι(D).

We claim that F̃ is continuous on D∗. Since F is continuous on D and ι(D) ⊂ D∗ is open,

it is enough to show that F̃ is continuous at each ξ ∈ D∗ \ ι(D). So fix some ξ ∈ D∗ \ ι(D).

Since Ω is compact it is enough to show the following: if ξn → ξ and F̃ (ξn) → η then

η = F̃ (ξ). Now for each n pick xn ∈ D sufficiently close to ξn (in the topology of D∗) so
that ι(xn)→ ξ and

‖F (xn)− F̃ (ξn)‖ < 1/n.

Then

η = lim
n→∞

F̃ (ξn) = lim
n→∞

F (xn)

but since ι(xn)→ ξ, from the discussion in the preceding paragraph, we get

lim
n→∞

F (xn) = F̃ (ξ).

Hence F̃ is continuous. �

6.3. The behavior of the Gromov product on Goldilocks domains. Returning to
the discussion at the start of this section: if (X, d) is a proper Gromov hyperbolic metric
space and xn, ym are two sequences in X converging to distinct points in X(∞) then (by
definition)

lim sup
n,m→∞

(xn|ym)o <∞

for any o ∈ X. We will now show that the Kobayashi distance on a Goldilocks domain
has similar behavior. If Ω ⊂ Cd is a domain and x, y, o ∈ Ω, we shall denote the Gromov
product for (Ω,KΩ) by (x|y)Ω

o .

Proposition 6.8. Suppose Ω ⊂ Cd is a Goldilocks domain. If xn, yn ∈ Ω, xn → ξ ∈ ∂Ω,
yn → η ∈ ∂Ω, and ξ 6= η then

lim sup
n,m→∞

(xn|ym)Ω
o <∞

for any o ∈ Ω.
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This proposition follows immediately from the next lemma, Proposition 4.4, and The-
orem 1.4.

Lemma 6.9. Suppose Ω ⊂ Cd is a domain and x, y, o ∈ Ω. If σ : [0, T ] → Ω is an
(1, κ)-almost-geodesic with σ(0) = x and σ(T ) = y then

(x|y)Ω
o ≤

3

2
κ+KΩ(o, σ).

Proof. Suppose s ∈ [0, T ] then

KΩ(x, y) ≥ |T − 0| − κ = |T − s|+ |s− 0| − κ
≥ KΩ(x, σ(s)) +KΩ(σ(s), y)− 3κ (6.1)

so

(x|y)Ω
o ≤

3

2
κ+

1

2
(KΩ(x, o) +KΩ(o, y)−KΩ(x, σ(s))−KΩ(σ(s), y))

≤ 3

2
κ+KΩ(o, σ(s))

by the reverse triangle inequality. �

7. Proper holomorphic maps

The main result of this section once more highlights the point — but in a manner dif-
ferent from that illustrated by subsection 6.2 — that the conditions defining a Goldilocks
domain Ω b Cd impose adequate control on the oscillation of the values of a proper map
into Ω along suitably chosen sequences approaching the boundary.

Since proper holomorphic maps are, in general, rather far from quasi-isometries of the
Kobayashi distance, the methods in this section differ from those in Section 6. This is
also the reason that the statement of Theorem 1.5 addresses a subclass of the class of
Goldilocks domains.

We will need the following results.

Result 7.1 (a paraphrasing of Theorem 1 of [DF77]). Let Ω ⊂ Cd be a bounded pseudo-
convex domain with C2-smooth boundary. Then there is a defining function ρ of class C2

and a number η0 ∈ (0, 1) such that for each η, 0 < η ≤ η0, the function ρ̂ := −(−ρ)η is a
bounded strictly plurisubharmonic exhaustion function on Ω.

The next result is a version of a Hopf lemma for subharmonic functions. This version
is Proposition 1.4 of [Mer93b].

Result 7.2. Let Ω ⊂ Cd be a bounded domain that satisfies an interior-cone condition
with aperture θ. Let ψ : Ω → [−∞, 0) be a plurisubharmonic function. Then, there exist
constants c > 0 and α > 1 (α = π/θ) such that

ψ(z) ≤ −c(δΩ(z))α

for all z ∈ Ω.

The idea of using the Kobayashi metric to study the boundary behavior of proper
holomorphic maps goes back to Diederich and Fornæss; see [DF79]. We adapt their idea
to maps for which the target space may have non-smooth boundary.
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The proof of Theorem 1.5. By Result 7.1, we can find a C2-smooth defining function ρ of
D and an η ∈ (0, 1) such that ϕ(z) := −(−ρ(z))η, z ∈ D, is strictly plurisubharmonic on
D. Define

ψ(w) := max {ϕ(z) : F (z) = w}

for each w ∈ Ω. The function ψ, being locally plurisubharmonic at each point not in the
branch locus of F , is plurisubharmonic away from the branch locus of F . As ψ is continuous
on Ω, it follows from classical facts — see, for instance, [JP93, Appendix PSH] — that ψ is a
strictly negative plurisubharmonic function on Ω. As Ω satisfies an interior-cone condition,
there exists, by Result 7.2, a c > 0 and an α > 1 such that

ψ(w) ≤ −c(δΩ(w))α

for all w ∈ Ω. Hence

(δΩ(F (z)))α ≤ 1

c
|ψ(F (z))| ≤ 1

c
|ϕ(z)| = 1

c
|ρ(z)|η

≤ CδD(z)η for all z ∈ D, (7.1)

for some C > 0, where the last inequality follows from the fact that ρ is a defining function.
It follows from the proof of part (2) of Proposition 3.5 — see the inequality (3.1) — that

kD(z; v) ≤ ‖v‖
δD(z)

for all z ∈ D and v ∈ Cd. Fix a vector v such that ‖v‖ = 1. Then,

kΩ (F (z);F ′(z)v) ≤ kD(z; v) ≤ 1

δD(z)

for all z ∈ D. It follows from this and (7.1) that

‖F ′(z)v‖ ≤ (δD(z))−1

kΩ

(
F (z); F ′(z)v

‖F ′(z)v‖

) ≤ δD(z)−1MΩ(C(δD(z))η/α)

∀z ∈ D and ∀v /∈ Ker(F ′(z)) : ‖v‖ = 1, (7.2)

and, clearly, the bound on ‖F ′(z)v‖ extends trivially to all unit vectors in Ker(F ′(z)).
As D is bounded and has C2 boundary, there exists an R > 0 such that

{z ∈ D : δD(z) ≤ R} ∪ ∂D =
⊔
ξ∈∂D

{ξ + tν(ξ) : 0 ≤ t ≤ R},

where ν(ξ) is the inward unit normal vector to ∂D at ξ. By construction, for each r ∈
(0, R], we have homeomorphisms πr : ∂D → {z ∈ D : δD(z) = r} =: ∂Dr defined as

πr(ξ) := the unique z ∈ ∂Dr such that δD(z) = dEuc(ξ, z)

= ξ + rν(ξ).

Pick and fix an r ∈ (0, R). Write F = (F1, . . . , Fd) and fix a j : 1 ≤ j ≤ d. If ξ ∈ ∂D and
0 < t < r, then

Fj(ξ + tν(ξ)) = Fj(πr(ξ))−
∫ r

t

[
d∑
l=1

∂lFj(ξ + sν(ξ))ν(ξ)l

]
ds,
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where ∂l denotes the complex differential operator ∂/∂zl. By (7.2) and the sentence
following it, we have∫ r

t

∣∣∣∣∣
d∑
l=1

∂lFj(ξ + sν(ξ))ν(ξ)l

∣∣∣∣∣ ds ≤
∫ r

t

MΩ(Csη/α)

s
ds

=
α

η

∫ Crη/α

Ctη/α

MΩ(u)

u
du.

Thus, given that u 7−→MΩ(n)/u is integrable on [0, R], the limit

F •j (ξ) := Fj(πr(ξ))− lim
t→0+

∫ r

t

[
d∑
l=1

∂lFj(ξ + sν(ξ))ν(ξ)l

]
ds

exists for every ξ ∈ ∂D.
We shall now use an aspect of a Hardy–Littlewood-type argument to complete the

proof. Pick an ε > 0. The preceding argument shows that

|F •j (ξ)− Fj(πr(ξ))| ≤
α

η

∫ Crη/α

0

MΩ(u)

u
du ∀ξ ∈ ∂D and ∀r ∈ (0, R). (7.3)

Hence, as u 7−→MΩ(n)/u is integrable on [0, R], given ξ1, ξ ∈ ∂D, we can find a constant
r(ε) > 0 sufficiently small that

|F •j (ξi)− Fj(πr(ε)(ξi))| < ε/3, i = 1, 2. (7.4)

Now, as
(
Fj |∂Dr(ε)

)
◦ πr(ε) is uniformly continuous, ∃δ > 0 such that

|Fj(πr(ε)(ξ1))− Fj(πr(ε)(ξ2))| < ε/3 whenever dEuc(ξ1, ξ2) < δ.

From this and (7.4), we deduce that F •j is continuous.
Now write

F̃ (z) = (F̃1, . . . , F̃d)(z) =

{
F (z), if z ∈ D,
F •(z), if z ∈ ∂D.

To prove that F̃ is continuous on D, it suffices to show that given a ξ ∈ ∂D and any

sequence {zn} ⊂ D \ {ξ} that converges to ξ, F̃j(zn) → F •j (ξ) for each j = 1, . . . , d. We

will construct an auxiliary sequence in D \ {ξ}. To this end, consider the continuous map
p : ({z ∈ D : δD(z) ≤ R} ∪ ∂D)→ ∂D, defined as

p(z) = π−1
r (z) if z ∈ ∂Dr.

For all sufficiently large n, we can define

Zn :=


zn, if zn ∈ ∂D,
zn, if zn ∈ {ξ + tν(ξ) : 0 < t ≤ R},
p(zn), otherwise.

By continuity of p, Zn → ξ. Using integrability of u 7−→ MΩ(n)/u once again, it follows

from (7.3) that (F̃j(zn) − F̃j(Zn)) → 0. However, it follows from the previous two para-

graphs that F̃j(Zn)→ F •j (ξ) for each j = 1, . . . , d. Hence, by the preceding discussion, we

infer that F̃ is continuous. �
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8. Wolff–Denjoy theorems

Before proving the Wolff–Denjoy theorems stated in the introduction, let us explain the
main idea. Suppose that Ω ⊂ Cd is a Goldilocks domain and f : Ω → Ω is 1-Lipschitz
with respect to the Kobayashi metric. The difficult case to rule out is when there exist
two sequences mi, nj → ∞ so that fmi(o) → ξ ∈ ∂Ω, fnj (o) → η ∈ ∂Ω, and ξ 6= η. In
this case we will obtain a contradiction by considering KΩ(fmi(o), fnj (o)). If we assume
that mi > nj then

KΩ(fmi(o), fnj (o)) ≤ KΩ(fmi−nj (o), o).

Now, if i � j then fmi−nj (o) should be close to ξ. In particular, KΩ(fmi(o), fnj (o)) is
bounded by the “distance” from o to ξ. On the other hand the visibility condition tells us
that any length minimizing curve joining fmi(o) to fnj (o) has to pass close to o and so

KΩ(fmi(o), fnj (o)) ≈ KΩ(fmi(o), o) +KΩ(o, fnj (o))

which for i, j � 0 is roughly the sum of the “distance” from o to ξ and the “distance”
from o to η. Combining these two observations gives a contradiction.

To obtain the second estimate we will use the following observation:

Lemma 8.1. Suppose Ω ⊂ Cd is a bounded domain. If σ : [a, b] → Ω is a (1, κ)-quasi-
geodesic then for all t ∈ [a, b] we have

KΩ(σ(a), σ(b)) ≤ KΩ(σ(a), σ(t)) +KΩ(σ(t), σ(b)) ≤ KΩ(σ(a), σ(b)) + 3κ.

Proof. This follows immediately from the triangle inequality and the definition of a quasi-
geodesic. �

8.1. The metric case. In this section, we give the proof of Theorem 1.11. This theorem
is the consequence of Theorem 8.2, which we now prove. The proof of Theorem 8.2 uses
our visibility result and an argument from a paper of Karlsson [Kar01, Theorem 3.4] about
the iterations of 1-Lipschitz maps on general metric spaces.

Theorem 8.2. Suppose Ω ⊂ Cd is a Goldilocks domain. If f : Ω→ Ω is 1-Lipschitz with
respect to the Kobayashi distance and

lim
n→∞

KΩ(fn(o), o) =∞

for some (hence any) o ∈ Ω, then there exists a ξ ∈ ∂Ω such that

lim
k→∞

fk(x) = ξ

for all x ∈ Ω.

Proof. Fix o ∈ Ω and pick a subsequence mi →∞ so that

KΩ(fmi(o), o) ≥ KΩ(fn(o), o)

for all n ≤ mi. By passing to another subsequence we may suppose that fmi(o)→ ξ ∈ ∂Ω.
Suppose that fnj (x)→ η for some x ∈ Ω and sequence nj →∞. We claim that η = ξ.

Pick a sequence ij → ∞ with mij > nj . Now let σj : [0, Tj ] → Ω be an (1, 1)-almost-
geodesic with σj(0) = fmij (o) and σj(Tj) = fnj (x). Since fmi(o) → ξ, fnj (x) → η, and
ξ 6= η, Theorem 1.4 implies the existence of some R > 0 so that

max
j∈N

KΩ(o, σj) ≤ R.

So pick some tj ∈ [0, Tj ] with

KΩ(o, σj(tj)) ≤ R.
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Then by Lemma 8.1 we have

KΩ(fmij (o), fnj (x)) ≥ KΩ(fmij (o), σj(tj)) +KΩ(σj(tj), f
nj (x))− 3

≥ KΩ(fmij (o), o) +KΩ(o, fnj (x))− 3− 2R

On the other hand

KΩ(fmij (o), fnj (x)) ≤ KΩ(fmij−nj (o), o) +KΩ(o, p) ≤ KΩ(fmij (o), o) +KΩ(o, x).

So

KΩ(o, fnj (x)) ≤ 3 + 2R+KΩ(o, x)

and we have a contradiction. �

Finally, we provide

The proof of Theorem 1.11. Since (Ω,KΩ) is Cauchy complete, a result of Ca lka [Ca l84,
Theorem 5.6] implies that either

lim
n→∞

KΩ(fn(x), x) =∞

for any x ∈ Ω or

sup
n≥0

KΩ(fn(x), x) <∞

for any x ∈ Ω. In the first case, Theorem 8.2 implies that there exists ξ ∈ ∂Ω so that

lim
n→∞

fn(x) = ξ

for any x ∈ Ω. In the second case, Result 3.4 implies that the orbit {fn(x) : n ∈ N} is
relatively compact in Ω for any x ∈ Ω. �

8.2. The holomorphic case. We shall now give a proof of Theorem 1.10.

Lemma 8.3. Let Ω ⊂ Cd be a Goldilocks domain. Suppose f : Ω → Ω is a holomorphic
map. If fni converges to some F : Ω→ ∂Ω then F ≡ ξ for some ξ ∈ ∂Ω.

Proof. Fix some x ∈ Ω. Then limi→∞ d(fni)x = dFx. And if v ∈ Cd then

kΩ(fni(x); d(fni)xv) ≤ kΩ(x; v).

Let τ = max{kΩ(x; v) : ‖v‖ = 1}. We claim that

‖d(fni)xv‖ ≤ τMΩ(δΩ(fni(x))) when ‖v‖ = 1.

It clearly suffices to consider the case when d(fni)xv 6= 0. In this case

1 ≤ kΩ(x; v)

kΩ(fni(x); d(fni)xv)
≤ τ

kΩ(fni(x); d(fni)xv)
.

Then

‖d(fni)xv‖ ≤
τ ‖d(fni)xv‖

kΩ(fni(x); d(fni)xv)
=

τ

kΩ

(
fni(x); d(fni )xv

‖d(fni )xv‖

)
≤ τMΩ(δΩ(fni(x))).

Then since δΩ(fni(x)) → 0 and limi→∞ d(fni)x = dFx we see that dFx = 0. Since
x ∈ Ω was arbitrary we see that dF = 0 and hence F is constant. �

The proof of Theorem 1.10. Since Ω is taut by [Aba89, Theorem 2.4.3], either

(1) for any x ∈ Ω, the orbit {fn(x) : n ∈ N} is relatively compact in Ω; or
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(2) for any x ∈ Ω,

lim
n→∞

dEuc(fn(x), ∂Ω) = 0.

Suppose that the second condition holds. Montel’s theorem tells us that there exist sub-
sequences {fnj} that converge locally uniformly to ∂Ω-valued functions. By Lemma 8.3,
the latter are constant functions. Thus, we will identify the set

Γ := {fn : n ∈ N}
compact−open

\ {fn : n ∈ N}

as a set of points in ∂Ω. Our goal is to show that Γ is a single point.
Assume for a contradiction that Γ is not a single point.

Case 1: Suppose that for some (hence any) o ∈ Ω we have

lim sup
n→∞

KΩ(fn(o), o) =∞.

Then we can find a subsequence mi →∞ so that

KΩ(fmi(o), o) ≥ KΩ(fk(o), o) for all k ≤ mi.

By passing to a subsequence we can assume that fmi → ξ ∈ ∂Ω. Now by assumption,
there exists a subsequence nj →∞ so that fnj → η ∈ ∂Ω and η 6= ξ.

Case 1(a): First consider the case in which

lim sup
j→∞

KΩ(fnj (o), o) =∞.

In this case we can repeat the proof of Theorem 8.2 essentially verbatim: Pick ij →∞ so
that mij > nj . Now let σj : [0, Tj ]→ Ω be an (1, 1)-almost-geodesic with σj(0) = fmij (o)
and σj(Tj) = fnj (o). Since fmi → ξ, fnj → η, and ξ 6= η, Theorem 1.4 implies the
existence of some R > 0 so that

max
j∈N

KΩ(o, σj) ≤ R.

So pick some tj ∈ [0, Tj ] with

KΩ(o, σj(tj)) ≤ R.

Then by Lemma 8.1 we have

KΩ(fmij (o), fnj (o)) ≥ KΩ(fmij (o), σj(tj)) +KΩ(σj(tj), f
nj (o))− 3

≥ KΩ(fmij (o), o) +KΩ(o, fnj (o))− 3− 2R

On the other hand

KΩ(fmij (o), fnj (o)) ≤ KΩ(fmij−nj (o), o) ≤ KΩ(fmij (o), o).

So

KΩ(o, fnj (o)) ≤ 3 + 2R

and we have a contradiction.

Case 1(b): Next consider the case in which

lim sup
j→∞

KΩ(fnj (o), o) <∞.

By Lemma 8.3, for any ` ∈ N we have

lim
j→∞

fnj−`(o) = η.
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Let

M` := lim sup
j→∞

KΩ(fnj−`(o), o).

We claim that

lim sup
`→∞

M` <∞.

Suppose not; then we find `k →∞ so that M`k > k, k = 1, 2, 3, . . . Then we pick jk →∞
so that

KΩ(fnjk−`k(o), o) > k, and dEuc(fnjk−`k(o), η) < 1/k.

But then fnjk−`k(o)→ η and

lim
k→∞

KΩ(fnjk−`k(o), o) =∞

which is impossible by Case 1(a). So we see that

lim sup
`→∞

M` <∞.

Then

lim sup
i→∞

lim sup
j→∞

KΩ(fmi(o), fnj (o)) ≤ lim sup
i→∞

lim sup
j→∞

KΩ(o, fnj−mi(o))

= lim sup
i→∞

Mmi <∞,

and

lim sup
i→∞

lim sup
j→∞

KΩ(fmi(o), fnj (o))

≥ lim sup
i→∞

lim sup
j→∞

(
KΩ(fmi(o), o)−KΩ(o, fnj (o))

)
≥ lim sup

i→∞

(
KΩ(fmi(o), o)−M0

)
=∞.

So we again have a contradiction.

Case 2: Suppose that for some (hence any) o ∈ Ω we have

lim sup
n→∞

KΩ(fn(o), o) <∞.

Suppose that ξ, η ∈ Γ are two distinct points. Fix neighborhoods Vξ of ξ and Vη of η

so that Vξ ∩Vη = ∅. By Theorem 1.4 there exists a compact set K ⊂ Ω with the following
property: if σ : [0, T ]→ Ω is any (1, 2)-almost-geodesic satisfying σ(0) ∈ Vξ and σ(T ) ∈ Vη
then σ([0, T ]) ∩K 6= ∅.

Next, for δ > 0 define the function Gδ : K ×K → R by

Gδ(k1, k2) := inf{KΩ(fm(k1), k2) : dEuc(fm(k1), ξ) < δ}.

By the assumptions for Case 2,

sup{Gδ(k1, k2) : δ > 0, k1, k2 ∈ K} <∞

and if δ1 < δ2 then Gδ1 ≥ Gδ2 . So the function

G(k1, k2) := lim
δ→0

Gδ(k1, k2)

is well defined.
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Next, let

ε := lim inf
z→η

inf
k∈K

KΩ(k, z).

By Proposition 3.5, ε > 0. Now pick q1, q2 ∈ K so that

G(q1, q2) < ε+ inf{G(k1, k2) : k1, k2 ∈ K}.

Fix a sequence of integers nj →∞ so that fnj → η. Suppose µi →∞ is any sequence
of integers such that fµi → ξ. Then by Lemma 8.3

lim
i→∞

fµi+nj (o) = lim
i→∞

fµi(fnj (o)) = ξ.

So we can find a subsequence {µij} ⊂ {µi} so that fµij+nj → ξ. Therefore, we can find a
sequence of integers mj →∞ such that

fmj → ξ,

fmj+nj → ξ,

lim
j→∞

KΩ(fmj (q1), q2) = G(q1, q2).

Finally, fix a sequence κj ↘ 0 with κj ≤ 2. By Proposition 4.4, there exists an (1, κj)-
almost-geodesic σj : [0, Tj ] → Ω with σ(0) = fmj+nj (q1) and σ(Tj) = fnj (q2). For j
sufficiently large, σj(0) ∈ Vξ and σj(Tj) ∈ Vη. Since each σj is an (1, 2)-almost-geodesic,
by the construction ofK there exists, for each j sufficiently large, a point kj ∈ K∩σ([0, Tj ]).
Then, by Lemma 8.1, we have

KΩ(fmj+nj (q1), fnj (q2)) ≥ KΩ(fmj+nj (q1), kj) +KΩ(kj , f
nj (q2))− 3κj .

Now by our definition of ε we have

lim inf
j→∞

KΩ(kj , f
nj (q2)) ≥ ε.

After passing to a subsequence we can suppose that kj → k ∈ K. Then since fmj+nj (q1)→
ξ we see that

lim inf
j→∞

KΩ(fmj+nj (q1), kj) ≥ lim inf
j→∞

(
KΩ(fmj+nj (q1), k)−KΩ(k, kj)

)
= lim inf

j→∞
KΩ(fmj+nj (q1), k) ≥ G(q1, k).

Since κj → 0, from the last three estimates, we get

lim inf
j→∞

KΩ(fmj+nj (q1), fnj (q2)) ≥ G(q1, k) + ε.

On the other hand,

lim sup
j→∞

KΩ(fmj+nj (q1), fnj (q2)) ≤ lim sup
j→∞

KΩ(fmj (q1), q2) = G(q1, q2).

So we have

G(q1, q2) ≥ G(q1, k) + ε

which contradicts our choice of q1, q2 ∈ K.
In both Cases 1 and 2, we obtain contradictions. Hence, Γ contains a single point. �
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