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Abstract. We generalize Chirka’s theorem on the extension of functions holomorphic in a

neighbourhood of Γ (F ) ∪ (∂D×D) – where D is the open unit disc and Γ (F ) is the graph of a

continuous D-valued function F – to the bidisc. We extend holomorphic functions by applying

the Kontinuitätssatz to certain continuous families of analytic annuli, which is a procedure suited

to configurations not covered by Chirka’s theorem.

1. Introduction and statement of results

This article is motivated by the paper [3] by Chirka, in which the following theorem is proved
(in what follows, D will represent the open unit disc in C with centre at the origin, and given a
function F defined in some region in C, Γ (F ) will denote the graph of F over its domain) :

Theorem (Chirka). Let F ∈ C(D; C) and assume that supD |F | < 1. Let Ω be a connected
neighbourhood of Γ (F )∪(∂D×D) contained in C×D. If f ∈ O(Ω), then f extends holomorphically
to the bidisc D ×D.

The requirement that supD |F | < 1 is rather essential to the extension theorem stated above
(in contrast, refer to [4] for a version by Chirka & Rosay, in which the condition supD |F | < 1 is
relaxed, but in which only the functions holomorphic in the union of a neighbourhood of Γ (F )
with {z ∈ C : |z| > 1} ×D – i.e. holomorphic in a large domain – extend holomorphically). A
pertinent counterexample, when supD |F | > 1, to the sort of holomorphic extension described in
Chirka’s theorem – i.e. extension from small neighbourhoods of Γ (F ) ∪ (∂D × D) – is the case
when Γ (F ) is a Wermer disc. We will discuss this example in §4 below.

The strategy of Chirka – inspired by the methods in [7] – is to construct a continuously varying
family of functions {Ft}t∈[0,1] ⊂ {G ∈ C(C) | lim|z|→∞G(z) = 0} such that F1 = F̃ and F0 ≡ 0,
and such that Γ (Ft) is complex-analytic in a neighbourhood of any (z, Ft(z)) /∈ Ω∪({ |z| > 1}×D).
Here, F̃ is any smooth extension of the F provided by the theorem, that satisfies F̃ ||z|≥2 ≡ 0.
Next, one extends f ∈ O(Ω) to Ω ∪ ({ |z| > 1} × D) via Laurent decomposition. One can now
show that the latter can be analytically continued, owing to the Kontinuitätssatz, via {Ft}t∈[0,1]

to a neighbourhood of the classical Hartogs configuration Γ (F0) ∪ (∂D × D). The condition
supD |F | < 1 is crucial in ensuring that the extension of f ∈ O(Ω) by Laurent decomposition is
single-valued. The strategy described fails in Cn, n > 2, and Chirka’s theorem does not extend to
higher dimensions as shown by Rosay’s counterexample in [8].
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The results in this paper are motivated by the two-fold aim of :
a) Showing that functions holomorphic in small neighbourhoods of a Hartogs-Chirka type

configuration Γ (F ) ∪ (∂D × D), with supD |F | � 1, extend holomorphically to D × D

(in a manner that will be made precise in Theorem 1.1), given that F satisfies suitable
restrictions.

b) Extending Chirka’s theorem to higher dimensions, and to a reasonably wide class of
Hartogs-Chirka type configurations Γ (F ) ∪ (∂D × Dm), m ≥ 2 (in particular, to con-
figurations in which F is not merely real-analytic or C∞).

Neither of the above seems to be achievable using Chirka’s strategy. In this article, we discuss
an alternative strategy for invoking the Kontinuitätssatz, and use it to demonstrate new Hartogs-
Chirka type extension phenomena.

The first of the above aims is met by the following theorem. But we first present the following
notation : if Ω is a domain in Cn, then (Ω̃ , πΩ) will denote the envelope of holomorphy of Ω.

Theorem 1.1. Let F ∈ C(D; C) and assume that sup∂D |F | < 1. Let Aj(r) represent the jth

Fourier coefficient of F (rei�), r > 0, j ∈ Z. Assume that F satisfies the condition

(1.1)
∑
n∈Z

|An(r)|
rn

< 1 ∀r ∈ (0, 1].

Let Ω1 be a neighbourhood of Γ (F ) ∪ (∂D × D) and let Ω2 be any connected open set satisfying
∂D ×D ⊂ Ω2 ⊂ Ω1 ∩ ({ |z| ≥ 1} ×D). If f ∈ O(Ω1), then f |Ω2 has a holomorphic extension to
D ×D.

Note that when supD |F | > 1, πΩ1(Ω̃1) ! D×D in general. For this reason, the usual arguments
justifying that f has a single-valued extension to the bidisc fail. This is the reason behind the
particular form of the conclusion of Theorem 1.1. Observe that while the condition (1.1) admits
F such that the negative Fourier modes of F (rei�) are large, it imposes a severe restriction on the
sizes of the positive Fourier modes of F (rei�) as r → 0+. One would like to investigate if such
severe restrictions on the positive Fourier modes are necessary. This is a valid concern because
if we assume that the function F has only positive Fourier modes, the condition (1.1) becomes
unnecessary. The relevant theorem in this case is

Theorem 1.2. Let F ∈ C(D; C) and assume that sup∂D |F | < 1. Let Aj(r) represent the jth

Fourier coefficient of F (rei�), r > 0, j ∈ Z. Assume that Aj ≡ 0 ∀j < 0. Let Ω1 be a neighbourhood
of Γ (F )∪ (∂D×D) and let Ω2 be any connected open set satisfying ∂D×D ⊂ Ω2 ⊂ Ω1 ∩ ({ |z| ≥
1} ×D). If f ∈ O(Ω1), then f |Ω2 has a holomorphic extension to D ×D.

In a somewhat different direction, we may consider a continuous mapping F := (F1, . . . , Fm) :
D → Dm, m ≥ 2, and consider the Hartogs-Chirka type configuration Γ (F )∪(∂D×Dm). We know
that, in general, Chirka’s result is not true for such higher-dimensional configurations – see [8]. In
contrast, it has been shown by Bharali [2] that Chirka’s result does generalize to a certain class of
Hartogs-Chirka type configurations. However, the class of real-analytic maps (F1, . . . , Fm) studied
in [2] is rather restrictive. We show in this paper that that if we impose a condition analogous to
condition (1.1) above, we can demonstrate analytic continuation for a considerably less restrictive
set of configurations. We make this precise in the following
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Theorem 1.3. Let F = (F1, . . . , Fm) ∈ C(D; Cm). Assume that F (eiθ) ∈ Dm ∀θ ∈ [0, 2π) and let
Ajk(r) represent the kth Fourier coefficient of Fj(rei�), r > 0, k ∈ Z, j = 1, . . . ,m. Assume that
each Fj satisfies the condition

(1.2)
∑
n∈Z

|Ajn(r)|
rn

< 1 ∀r ∈ (0, 1].

Let Ω1 be a neighbourhood of Γ (F ) ∪ (∂D ×Dm) and let Ω2 be any connected open set satisfying
∂D ×Dm ⊂ Ω2 ⊂ Ω1 ∩ ({ |z| ≥ 1} ×Dm). If f ∈ O(Ω1), then f |Ω2 has a holomorphic extension
to D ×Dm.

We note that if, in Theorem 1.3, F were to satisfy the restriction F (ζ) ∈ Dm ∀ζ ∈ D, then
all functions f ∈ O(Ω) – where Ω is a connected neighbourhood of Γ (F ) ∪ (∂D ×Dm) contained
in C × Dm – would extend to Dm, which is just Chirka’s extension phenomenon in a restricted,
higher-dimensional setting.

The approach used in the first and the third theorem is to construct a continuous family of
analytic annuli which are attached to Γ (H) – where H is an appropriately selected perturbation
of F – along their inner boundaries, and to ∂D ×Dm (with m = 1 in Theorem 1.1 and m ≥ 2 in
Theorem 1.3) along their outer boundaries. Once this family is constructed, analytic continuation
is achieved by invoking the Kontinuitätssatz. The proof of Theorem 1.2 uses a similar idea, but
involves continuous families of analytic discs. These proofs may be found in §3. The technical
construction of the aforementioned families of annuli/discs is carried out in the next section.

In the final section of this paper, we discuss a few examples. Firstly, we show that one can
construct Hartogs-Chirka type configurations Γ (F )∪(∂D×D) such that supD |F | is as large as we
want and such that functions holomorphic in small neighbourhoods of this configuration extend.
Next, we discuss a configuration involving Wermer’s disc (see Example 4.2 for a definition) – for
which the extension phenomenon occuring in the previous example fails. And lastly, we show how
Rosay’s counterexample to a higher-dimensional analogue of Chirka’s theorem fails to satisfy the
hypotheses of Theorem 1.3.

2. Preliminary lemmas

We need a few preliminary lemmas before we can prove our main theorems. In what follows,
Ann(a; r,R) will denote the open annulus with centre at a ∈ C and having inner and outer radii
r and R respectively, while D(a;R) will denote the open disc of radius R with centre at a. The
symbol C∞(D; Cm), m = 1, 2, . . . , will denote the class of infinitely differentiable functions on the
unit disc, all of whose derivatives extend to continuous functions on D.

The reader will notice that in the following lemma the hypothesisG ∈ C∞(D; C) is much stronger
than is required for the conclusion of Lemma 2.1. The only place where we use this hypothesis
is in showing the existence of a certain limit towards the end of the proof. However, stating the
strongest versions of Lemmas 2.1 and 2.3 – which are of relatively minimal utility in themselves –
merely results in statements that are overly technical. For this reason, the G occuring in Lemmas
2.1-2.4 shall be assumed to be C∞.
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Lemma 2.1. Let G(reiθ) =
∑N

n=−N bn(r)einθ and assume that G ∈ C∞(D; C). Assume further
that

(2.1)
N∑

n=−N

|bn(r)|
rn

< 1 ∀r ∈ (0, 1].

Then the holomorphic function

Ar(ζ) =
N∑

n=−N

bn(r)
(
ζ

r

)n

, ζ ∈ Ann(0; r, 1),

which belongs to O[Ann(0; r, 1)] ∩ C[Ann(0; r, 1)], satisfies |Ar(eiθ)| < 1. Fix ν ∈ N and let K b
Ann(0; 1/ν, 1) be a compact subset. The function (0, 1/ν] × K 3 (r, ζ) 7→ Ar(ζ) extends to a
continuous function on [0, 1/ν]×K.

Proof. To prove the first part of this lemma, note that

(2.2) |Ar(eiθ)| ≤
N∑

n=−N

|bn(r)|
∣∣∣∣eiθ

r

∣∣∣∣n =
N∑

n=−N

|bn(r)|
rn

< 1.

We fix ν ∈ N and then fix a compact set K b Ann(0; 1/ν, 1). It is obvious that (0, ν]×K 3 (r, ζ) 7→
b−n(r)(r/ζ)n extends to a continuous function on [0, 1/ν]×K, which simply vanishes when r = 0,
for each n = 1, 2, . . . , N . Now consider the function (r, ζ) 7→ bn(r)(ζ/r)n, n = 1, 2, . . . , N . Note
that (2.1) =⇒ |bn(r)| < rn ∀n = 1, 2, . . . , N . This implies, since G is assumed to be smooth,
that each of the latter functions extends continuously to a function ϕn ∈ C([0, 1/ν]×K), which is
defined as

ϕn(r, ζ) :=


bn(r)(ζ/r)n, if (r, ζ) ∈ (0, 1/ν]×K,

1
n!

dnbn
drn

∣∣∣∣
r=0

ζn, if (r, ζ) ∈ {0} ×K.

Since Ar is a finite sum of the functions bn(r)(r/ζ)n, the last two observations establish the second
part of this lemma. �

Lemma 2.2. Let G be as in Lemma 2.1, but assume additionally that sup∂D |G| < 1. Let Ω1 be
a neighbourhood of Γ (G) ∪ (∂D ×D) such as that described in Theorem 1.1. Then

a) {Ar}r∈(0,1) is a continuous family in the sense that for a fixed ζ0 ∈ D \ {0}, r 7→ Ar(ζ0)
is continuous in the interval (0, |ζ0| ).

b) limr→0+ Ar(ζ0) exists for each ζ0 ∈ D \ {0}, and there exists a ψ ∈ O(D) such that
ψ(ζ) = limr→0+ Ar(ζ) on D \ {0}.

c) Define

K := Γ (ψ) ∪
[
∪0<r<1{(ζ,Ar(ζ)) ∈ C2 | r < |ζ| < 1}

]
\ Ω1.

K is compact.

Proof. Part (a) and the first half of part (b) are obvious conclusions of Lemma 2.1. Thus, we may
define

ψ(ζ) := lim
|ζ|>r→0+

Ar(ζ) ∀ζ ∈ D \ {0}.

Fix a ν ∈ N. Lemma 2.1(b) tells us that

(Ar|Ann(0;1/ν,1))(ζ) −→ ψ(ζ) uniformly on each compact K b Ann(0; 1/ν, 1) as r ↘ 0 .
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We conclude from this statement that

(2.3) ψ|Ann(0;1/ν,1) ∈ O[Ann(0; 1/ν, 1)] ∀ν = 2, 3, 4, . . .

Before proceeding any further, we comment that the functions Ar are so constructed that Γ (Ar),
0 < r < 1, are analytic annuli that are attached to Γ (G) along their inner boundaries and – in
view of the inequality (2.2) – to ∂D ×D along their outer boundaries. Therefore,

(2.4) |Ar(ζ)| ≤ max

{
sup
|ξ|=r

|Ar(ξ)|, 1

}
≤ max

{
sup
D

|G|, 1

}
∀ζ ∈ Ann(0; r, 1) and for each r ∈ (0, 1).

By (2.3), ψ is already holomorphic on D \ {0}. The bounds above imply, since ψ(ζ) is the limit
of the Ar(ζ)’s, provided ζ 6= 0, that |ψ(ζ)| ≤ supξ 6=0 |G(ξ)| in a punctured neighbourhood of the
origin. Thus, ψ extends to a holomorphic function on D. This establishes (b).

Notice that by the estimates (2.4) and part (b) of this lemma, K is a bounded set. Therefore,
it suffices to show that K is closed. Now consider a point (z, w) /∈ Ω1 with the property that
there exist sequences {r(ν)}ν∈N ⊂ (0, 1) and {ζν}ν∈N ⊂ D such that r(ν) → 0 as ν → ∞ and
(ζν ,Ar(ν)(ζν)) −→ (z, w) as ν →∞. It is easy to see that to prove (c), it suffices to show that all
such points (z, w) ∈ K. Notice that, by construction, there is a δ(Ω1) > 0 depending only on Ω1

such that (ζ,Ar(ζ)) ∈ Ω1 ∀r, |ζ| < δ(Ω1). Thus, as (z, w) /∈ Ω1, z 6= 0. Now, given that the Ar’s
converge uniformly on compact subsets lying away from 0, there exists κ1 ∈ N such that

|Ar(ν)(ζ)− ψ(ζ)| < ε/2 ∀ν ≥ κ1, ∀ζ ∈ D(z; |z|/2).

Let κ2 ∈ N be such that

ζν ∈ D(z; |z|/2) and |w −Ar(ν)(ζν)| < ε/2 ∀ν ≥ κ2.

The above inequalities imply that

|w − ψ(ζν)| ≤ |w −Ar(ν)(ζν)|+ |Ar(ν)(ζν)− ψ(ζν)| < ε ∀ν ≥ max(κ1, κ2).

This tells us that w = limν→∞ ψ(ζν), whence (z, w) ∈ Γ (ψ)\Ω1. This establishes (c), and concludes
our proof. �

Lemma 2.3. Let G(reiθ) =
∑N

n=0 bn(r)einθ – i.e. we assume that G(rei�) has no negative Fourier
modes. Assume further that G ∈ C∞(D; C). Then the holomorphic function

Dr(ζ) =
N∑

n=0

bn(r)
(
ζ

r

)n

, ζ ∈ D(0; r),

which belongs to O[D(0; r)] ∩ C[D(0; r)], satisfies Dr(reiθ) = G(reiθ) ∀θ ∈ [0, 2π). Fix ν ∈ N and
let K b D(0; 1− 1/ν) be a compact subset. The function (r, ζ) 7→ Dr(ζ) is a continuous function
on [1− 1/ν, 1]×K.

The above lemma is a triviality; we merely state it as an element that will be needed in the
proof of our next result.

Lemma 2.4. Let G be as in Lemma 2.3, but assume additionally that sup∂D |G| < 1. Let Ω1 be
a neighbourhood of Γ (G) ∪ (∂D ×D) such as that described in Theorem 1.2. Then
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a) {Dr}r∈(0,1) is a continuous family in the sense that for a fixed ζ0 ∈ D, r 7→ Dr(ζ0) is
continuous in the interval ( |ζ0|, 1).

b) limr→1− Dr(ζ) exists for each ζ ∈ D, and this limit defines a holomorphic function ψ ∈
O(D).

c) Define
K := Γ (ψ) ∪

[
∪0<r<1{(ζ,Dr(ζ)) ∈ C2 | |ζ| < r}

]
\ Ω1.

K is compact.

Proof. Part (a) and the first half of part (b) are direct consequences of Lemma 2.3. The inference
that

ψ(ζ) := lim
|ζ|<r→1−

Dr(ζ) ∀ζ ∈ D

is holomorphic follows from Lemma 2.3. The uniform-convergence argument is exactly analogous
to the argument used in proving Lemma 2.2. We therefore omit the details. We remark that

ψ(ζ) =
N∑

n=0

bn(1)ζn.

The functions Dr are so constructed that Γ (Dr), 0 < r < 1, are analytic discs that are attached
to Γ (G) along their boundaries. Therefore,

|Dr(ζ)| ≤ sup
|ξ|=r

|Dr(ξ)| ≤ sup
D

|G| ∀ζ ∈ D(0; r) and for each r ≥ 1− 1/ν.

Thus, K is a bounded set, and we argue that K is closed exactly as we did in Lemma 2.2(c). �

The following lemma is key to the proofs of Theorems 1.1-1.3. Before proving it, we explicitly
state the following simple

Fact : Due to the continuity of the functions F and G occuring in the statements of the various
theorems and lemmas above, the associated Fourier coefficients An(r) and bn(r) satisfy An(0) =
bn(0) = 0 ∀n 6= 0.

This fact is used implicitly at several places in the next lemma.

Lemma 2.5. Let F ∈ C(D; C) and let Aj(r) represent the jth Fourier coefficient of F (rei�),
r > 0, j ∈ Z. Assume that :

1) sup∂D |F | < 1, and
2) F satisfies the condition

(2.5)
∑
n∈Z

|An(r)|
rn

< 1 ∀r ∈ (0, 1].

Given ε > 0 there exists a function G ∈ C∞(D; C) of the form

G(reiθ) =
N∑

n=−N

Bn(r)einθ,

where N is some large positive integer and Bn ∈ C∞([0, 1]; C), such that
• |F (ζ)−G(ζ)| < ε ∀ζ ∈ D,
• G has the property (1) and satisfies the analogue of (2) above (with Bn(r) replacing An(r)

in (2.5) above).
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Furthermore, if property (2) is replaced by

2∗) F has no negative Fourier modes,

then G can be constructed so that it has property (1) and B−j ≡ 0 for j = 1, 2, . . . , N .

Proof. Define

Sm(θ, r) :=
m∑

j=−m

Aj(r)eijθ

σn(θ, r) :=
S0(r, θ) + · · ·+ Sn(θ, r)

n+ 1
Let us first assume that F has properties (1) and (2). Let η > 0 be so small that

η < 1− sup
∂D

|F |,(2.6)

η +
∑
n∈Z

|An(r)|/rn < 1 ∀r ∈ (0; 1],

and define δ := min(ε, η). There exists a natural number N > 0 such that

(2.7) |F (reiθ)− σN (θ, r)| < δ/2 ∀(θ, r) ∈ [0, 2π)× [0, 1].

This above is a consequence of Fejér’s theorem. For a fixed r ∈ [0, 1], (2.7) is precisely the statement
of Fejér’s theorem applied to the periodic function F (rei�). However, on examining the proof of
Fejér’s theorem, one sees that owing to the equicontinuity of the family {F (rei�)}r∈[0,1] ⊂ C(T),
the choice of N in (2.7) is uniform in r ∈ [0, 1].

One sees immediately that if one writes

σN (θ, r) =
N∑

j=−N

aj(r)eijθ,

then |aj(r)| ≤ |Aj(r)| ∀r ∈ [0, 1]. For each j = 1, 2, . . . , N , we pick a function B−j(r) which
satisfies the following conditions :

i) B−j ∈ C∞([0, 1]; C),
ii) B−j vanishes to infinite order at r = 0, and
iii) |a−j(r)−B−j(r)| ≤ δ/2(2N + 1) ∀r ∈ [0, 1],

provided a−j 6≡ 0, j = 1, 2, . . . , N . If a−j ≡ 0, we just choose B−j ≡ 0. Note that by our condition
on the Fourier coefficients {An(r)}n∈Z , |aj(r)| ≤ |Aj(r)| ≤ rj ∀j = 1, 2, . . . , N, r ∈ [0, 1). Let
0 < R0 < 1 be a small number such that

R0 ≤
{

δ

4(2N + 1)

}1/j

∀j = 1, 2, . . . , N.

For each j = 1, 2, . . . , N we define a function Bj(r) as follows :

Bj(r) :=

{
αj(r)rj , if r ≤ R0,

βj(r), if r ≥ R0,

such that

i∗) Bj ∈ C∞([0, 1]; C),
ii∗) αj vanishes to infinite order at r = 0,
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iii∗) αj satisfies

|αj(r)| ≤ sup
s≤1

|aj(s)|
sj

∀s ∈ [0, R0],

iv∗) βj satisfies

|βj(r)− aj(r)| ≤ Rj
0δ

2(2N + 1)
∀r ∈ [R0, 1].

Finally, define B0(r) to be any C∞ function such that |B0(r) − a0(r)| < δ/2(2N + 1) ∀r ∈ [0, 1]
and such that B0 −B0(0) vanishes to high order at r = 0. Now write

G(reiθ) =
N∑

j=−N

Bj(r)eijθ.

We now make some estimates. We first consider the B−j(r)’s, j = 1, 2, . . . , N . Note that the
following statements continue to be true trivially if B−j ≡ 0 for any j = 1, 2, . . . , N .

N∑
j=1

|B−j(r)− a−j(r)| ≤
N∑

j=1

δ

2(2N + 1)
≤ δN

2(2N + 1)
,(2.8)

N∑
j=1

|B−j(r)|rj ≤
N∑

j=1

rj

{
|a−j(r)|+ δ

2(2N + 1)

}
(2.9)

≤
N∑

j=1

|a−j(r)|rj +
δN

2(2N + 1)
∀r ∈ [0, 1].

Next, we consider the Bj(r)’s, j = 1, 2, . . . , N . First, we let 0 ≤ r ≤ R0. We use item (iii∗) in the
definition of Bj(r) above to get :

N∑
j=1

|Bj(r)− aj(r)| ≤
N∑

j=1

rj

∣∣∣∣αj(r)− |aj(r)|
rj

∣∣∣∣(2.10)

≤
N∑

j=1

2Rj
0 sup

s≤1

|aj(s)|
sj

≤
N∑

j=1

2
{

δ

4(2N + 1)

}
sup
s≤1

|Aj(s)|
sj

≤ δN

2(2N + 1)
,

N∑
j=1

|Bj(r)|
rj

≤
N∑

j=1

sup
s≤1

|aj(s)|
sj

∀r ∈ [0, R0].(2.11)
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And when we consider R0 ≤ r ≤ 1, we use item (iv∗) in the definition of Bj(r) to get :
N∑

j=1

|Bj(r)− aj(r)| ≤
N∑

j=1

Rj
0δ

2(2N + 1)
≤ δN

2(2N + 1)
,(2.12)

N∑
j=1

|Bj(r)|
rj

≤
N∑

j=1

{
|aj(r)|
rj

+
Rj

0δ

2(2N + 1)Rj
0

}
(2.13)

≤
N∑

j=1

|aj(r)|
rj

+
δN

2(2N + 1)
∀r ∈ [R0, 1].

Observe that from (2.9) and (2.11), we have
N∑

j=−N

|Bj(r)|
rj

≤
N∑

j=1

|a−j(r)|rj +
δN

2(2N + 1)
+ |a0(r)|+ δ

2(2N + 1)
+

N∑
j=1

sup
s≤1

|aj(s)|
sj

≤
N∑

j=−N

sup
s≤1

|aj(s)|
sj

+
δ(N + 1)
2(2N + 1)

≤
N∑

j=−N

sup
s≤1

|Aj(s)|
sj

+
η

2
< 1 ∀r ∈ [0, R0].(2.14)

The last inequality follows from the definition of η and the fact that |aj(r)| ≤ |Aj(r)| ∀r ∈ [0, 1].
Next, applying (2.9) and (2.13) we get

N∑
j=−N

|Bj(r)|
rj

≤
∑
j 6=0

|aj(r)|
rj

+
2δN

2(2N + 1)
+ |a0(r)|+ δ

2(2N + 1)

≤
N∑

j=−N

sup
s≤1

|aj(s)|
sj

+
δ

2

≤
N∑

j=−N

sup
s≤1

|Aj(s)|
sj

+
η

2
< 1 ∀r ∈ [R0, 1].(2.15)

From the inequalities (2.6), (2.14) and (2.15), we get
N∑

j=−N

|Bj(r)|
rj

< 1 ∀r ∈ [0, 1],

which is to say that G satisfies the analogue of (2), with Bn(r) replacing An(r) in the expression
(2.5).

We now exploit the estimates (2.8), (2.10) and (2.12), to get

|F (reiθ)−G(reiθ)| ≤ |F (reiθ)− σN (reiθ)|+
N∑

j=−N

|aj(r)−Bj(r)|

<
δ

2
+ 2 · δN

2(2N + 1)
+

δ

2(2N + 1)
= δ.(2.16)

Given the way in which δ is defined, we see that G has the property (1), and |G(ζ) − F (ζ)| <
ε ∀ζ ∈ D. G is, of course, smooth by construction.
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Note further that in the above construction, if F has no negative Fourier modes, neither does G.
So, if F had the property (2∗) instead of property (2), in addition to choosing B−j ≡ 0 we would use
the same rule by which we selected B0(r) in the above argument to define Bj(r), j = 1, 2, . . . , N .
It is easy to verify that this modified construction would yield the second part of this lemma. �

3. Proofs of the theorems

3.1. The proof of Theorem 1.1. Let ε > 0 be so small that F (D) + η ⊂ Ω1 ∀η ∈ C such that
|η| < 2ε. By Lemma 2.5, there exists a function H ∈ C∞(D; C) with H(reiθ) =

∑N
n=−N Bn(r)einθ

such that

|H(ζ)− F (ζ)| < ε ∀ζ ∈ D, sup
∂D

|H| < 1,

N∑
n=−N

|Bn(r)|
rn

< 1 ∀r ∈ (0, 1].

Let δ > 0 be so small that

• sup∂D |H|+ δ < 1;
• δ +

∑N
n=−N |Bn(r)|/rn < 1 ∀r ∈ (0; 1]; and

• H(D) + η ⊂ Ω1 ∀η ∈ C such that |η| < δ.

Define, for each η such that |η| < δ

H(η)(ζ) := H(ζ) + η,

A(η)
r (ζ) :=

∑
n 6=0

Bn(r)
(
ζ

r

)n

+ (B0(r) + η), ζ ∈ Ann(0; r, 1),

We apply Lemma 2.2 to {A(η)
r }r∈(0;1) for each η, by taking

bn(r) = Bn(r) ∀n 6= 0, b0(r) = B0(r) + η

in that lemma. We conclude that there is a function ψ ∈ O(D) such that

1) For any fixed ζ0 ∈ D \ {0}, r 7→ A
(η)
r (ζ0) is continuous in (0, |ζ0| ) for |η| < δ.

2) For ζ ∈ D \ {0}, limr→0+ A
(η)
r (ζ) = ψ(ζ) + η for |η| < δ.

3) For each η : |η| < δ, K(η) is compact, where we define

K(η) := Γ (ψ + η) ∪
[
∪0<r<1{(ζ,A(η)

r (ζ)) ∈ C2 | r < |ζ| < 1}
]
\ Ω1.

In other words, for each fixed η, the family {Γ (A(η)
r )}r∈(0,1) is a continuous family of analytic

annuli attached to Γ (H(η))∪ (∂D×D), which accumulate onto Γ (ψ+ η) as r → 0+. The analytic
annuli Γ (A(η)

r ) with r ≈ 1 are contained in Ω1. We can therefore apply the Kontinuitätssatz to
conclude that

(3.1) U(∆) := {(z, w) ∈ D × C : (w − ψ(z)) ∈ ∆} =
⋃

η∈∆

Γ (ψ + η) ⊂ πΩ1(Ω̃1),

where ∆ is any disc contained in D(0; δ)

There is a canonical holomorphic imbedding of Ω1 into Ω̃1. We denote this imbedding by
j : Ω1 ↪→ Ω̃1. Corresponding to each f ∈ O(Ω1) there is a holomorphic function on Ω̃1, which we



EXTENSION THEOREMS OF HARTOGS-CHIRKA TYPE 11

shall denote by E(f), such that E(f) ◦ j = f . It is now a standard argument – see, for instance [5]
or [3] – to show that there exist holomorphic mappings

Ãr(� ; η) : Ann(0; r, 1) → Ω̃1 ∀r ∈ (0, 1), and ψ̃(� ; η) : D → Ω̃1

such that

a) For each η with |η| < δ :

πΩ1 ◦ Ãr(ζ; η) = (ζ,A(η)
r (ζ)) ∀ζ ∈ Ann(0; r, 1) when r ∈ (0, 1), and

πΩ1 ◦ ψ̃(ζ; η) = (ζ, ψ(ζ) + η) ∀ζ ∈ D.

b) j(ζ,A(η)
r (ζ)) = Ãr(ζ; η) wherever the left-hand side is defined, and ∀r ∈ (0, 1).

c) j(ζ, ψ(ζ) + η) = ψ̃(ζ; η) wherever the left-hand side is defined.

Notice that – in view of item (a) – for each fixed ζ ∈ D, η 7→ ψ̃(ζ; η) is holomorphic.

Let V be the connected component of (πΩ1)−1(U( |η| < δ)) containing C0 := image(ψ̃(� ; 0)).
For each point q ∈ C0 there is a neighbourhood W (q) b V of q such that πΩ1 |W (q) : W (q) → C2 is
a biholomorphism. Let ∆∗ be a disc centered at the origin that is so small that

image(ψ̃(� ; η)) ⊂
⋃

q∈C0

W (q) ∀η ∈ ∆∗.

We define Ω∗ := U(∆∗) ∪ ω2, ω2 being a connected open set satisfying

• Ω2 ⊂ ω2 ⊂ Ω1; and
• ω2 ∩ U(∆∗) is connected,

where Ω2 is as described in Theorem 1.1, and U(∆∗) is as defined by (3.1). Our goal is to map
Ω∗ into Ω̃1 in such a way that this mapping extends j. This mapping will allow us – given any
f ∈ O(Ω1) – to extend f |ω2 to Ω∗. But Ω∗ is a neighbourhood of a classical Hartogs configuration,
whence f |Ω2 would extend to the bidisc. To this end, we define

j̃ (z, w) :=


ψ̃(z;w − ψ(z)), if (z, w) ∈ U(∆∗),

j(z, w), if (z, w) ∈ ω2.

Note that if (z, w) ∈ U(∆∗) ∩ ω2, then, in view of item (c) above

(3.2) ψ̃(z;w − ψ(z)) = j(z, ψ(z) + {w − ψ(z)}) = j(z, w) ∀(z, w) ∈ U(∆∗) ∩ ω2.

Thus, j̃ is well-defined, and extends j. From our foregoing remarks, j̃ is holomorphic. Given any
f ∈ O(Ω1), we define f̃ ∈ O(Ω∗) by f̃ := E(f) ◦ j̃ . In view of (3.2), f̃ |ω2 ≡ f |ω2 . Notice that
Ω∗ is a neighbourhood of Γ (ψ) ∪ (∂D ×D), which is the classical Hartogs configuration. Thus f̃
has a holomorphic extension to D×D, whence f |Ω2 has a holomorphic extension to D×D. This
concludes our proof. �

3.2. The proof of Theorem 1.2. Since the proof of this theorem is similar to that of Theorem
1.1, we shall be brief. Let ε > 0 be so small that F (D) + η ⊂ Ω1 ∀η ∈ C such that |η| < 2ε. By
Lemma 2.5, there exists a function H ∈ C∞(D; C) with H(reiθ) =

∑N
n=0Bn(r)einθ such that

|H(ζ)− F (ζ)| < ε ∀ζ ∈ D, sup
∂D

|H| < 1.
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Recall that the H that has the two properties above can be so chosen that it has no negative
Fourier modes. Let δ > 0 be so small that

• sup∂D |H|+ δ < 1; and
• H(D) + η ⊂ Ω1 ∀η ∈ C such that |η| < δ.

For each η such that |η| < δ, we define

H(η)(ζ) := H(ζ) + η,

D(η)
r (ζ) :=

N∑
n=1

Bn(r)
(
ζ

r

)n

+ (B0(r) + η), ζ ∈ D(0; r),

We apply Lemma 2.4 to {D(η)
r }r∈(0;1) for each η, by taking

bn(r) = Bn(r) ∀n = 1, 2, . . . , N, b0(r) = B0(r) + η

in that lemma. For each fixed η, the family {Γ (D(η)
r )}r∈(0,1) is a continuous family of analytic discs

which are attached to Γ (H(η)) along their boundaries, and which accumulate onto a holomorphic
graph Γ (ψ + η) as r → 1−. Furthermore, for |η| < δ, each

K(η) := Γ (ψ + η) ∪
[
∪0<r<1{(ζ,D(η)

r (ζ)) ∈ C2 | |ζ| < r}
]
\ Ω1

is compact. We may therefore apply the Kontinuitätssatz to conclude that

(3.3) U(∆) := {(z, w) ∈ D × C : (w − ψ(z)) ∈ ∆} =
⋃

η∈∆

Γ (ψ + η) ⊂ πΩ1(Ω̃1),

where ∆ is any disc contained in D(0; δ)

Let j : Ω1 ↪→ Ω̃1 be the canonical holomorphic imbedding of Ω1 into Ω̃1. As before, there exist
holomorphic mappings

D̃r(� ; η) : D(0; r) → Ω̃1 ∀r ∈ (0, 1), and ψ̃(� ; η) : D → Ω̃1

such that

a) For each η with |η| < δ :

πΩ1 ◦ D̃r(ζ; η) = (ζ,D(η)
r (ζ)) ∀ζ ∈ D(0; r) when r ∈ (0, 1), and

πΩ1 ◦ ψ̃(ζ; η) = (ζ, ψ(ζ) + η) ∀ζ ∈ D.

b) j(ζ,D(η)
r (ζ)) = D̃r(ζ; η) wherever the left-hand side is defined, and ∀r ∈ (0, 1).

c) j(ζ, ψ(ζ) + η) = ψ̃(ζ; η) wherever the left-hand side is defined.

Arguing exactly as in the proof of Theorem 1.1, we can find a disc ∆∗ ⊂ D(0; δ), centered at the
origin, and an appropriate open set ω2 satisfying Ω2 ⊂ ω2 ⊂ Ω1, such that if we define

j̃ (z, w) :=


ψ̃(z;w − ψ(z)), if (z, w) ∈ U(∆∗),

j(z, w), if (z, w) ∈ ω2,

(where U(∆∗) is as defined by (3.3) above), then j̃ is holomorphic and well defined. Holomorphicity
follows from (a) above, while (c) implies that

(3.4) ψ̃(z;w − ψ(z)) = j(z, ψ(z) + {w − ψ(z)}) = j(z, w) ∀(z, w) ∈ U(∆∗) ∩ ω2.
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We define Ω∗ := U(∆∗)∪ω2. As before, given any f ∈ O(Ω1), we define f̃ ∈ O(Ω∗) by f̃ := E(f)◦j̃ .
In view of (3.4), f̃ |ω2 ≡ f |ω2 . Since Ω∗ is a neighbourhood of Γ (ψ) ∪ (∂D ×D), i.e. is a classical
Hartogs configuration, f̃ has a holomorphic extension to D ×D, whence f |Ω2 has a holomorphic
extension to D ×D. This concludes our proof. �

3.3. The proof of Theorem 1.3. The proof of Theorem 1.3 proceeds along the same lines as
the proof of the first theorem. The essential difference is that we find an ε > 0 such that F (D)+η ⊂
Ω ∀η ∈ D(0; 2ε)m, and then apply Lemma 2.5 to the pairs (F1, ε), . . . , (Fm, ε) to obtain a map
G = (G1, . . . , Gm) all of whose components obey the conclusions of Lemma 2.5. Let us write
Gj(reiθ) =

∑N(j)
n=−N(j)Bn(r)einθ, j = 1, 2, . . . ,m. We apply Lemma 2.1 by defining

bn(r) := Bjn(r), j 6= 0, b0(r) := Bj0(r) + η,

for each j = 1, . . . ,m, and obtain

A(η)
r := (A(η)

1,r , . . . ,A
(η)
m,r) : Ann(0; r, 1) → Dm,

A(η)
r ∈ O[Ann(0; r, 1)] ∩ C[Ann(0; r, 1);Dm] for every η ∈ D(0; δ)m and ∀r ∈ (0; 1),

where δ > 0 is chosen to be so small that :

• sup∂D |Hj |+ δ < 1 for j = 1, . . . ,m;
• δ +

∑N
n=−N |Bjn(r)|/rn < 1 ∀r ∈ (0; 1] and j = 1, . . . ,m; and

• H(D) + η ⊂ Ω1 ∀η ∈ D(0; δ)m.

As before, there exists a Dm-valued function ψ := (ψ1, . . . , ψm) ∈ O(D) ∩ C(D;Dm) such that for
each η ∈ D(0; δ)m

lim
r→0+

A(η)
r (ζ0) = ψ(ζ0) + η for each fixed ζ0 ∈ D \ {0}.

Defining

H(η) := (H1(ζ) + η1, . . . ,Hn(ζ) + ηm) ∀η = (η1, . . . , ηm) ∈ D(0; δ)m,

K(η) := Γ (ψ + η) ∪
[
∪0<r<1Γ (A(η)

r )
]
\ Ω1,

we see that properties (1)–(3) in the proof of Theorem 1.1 hold for {A(η)
r }r∈(0,1) and ψ in our new

context – the only difference being that the relevant functions are vector-valued, and η varies in a
polydisc D(0; δ)m. Therefore, {Γ (A(η)

r )}r∈(0,1) is a continuous family of analytic annuli attached
to Γ (H(η))∪ (∂D×Dm), which accumulate onto Γ (ψ+η) as r → 0+. The analytic annuli Γ (A(η)

r )
with r ≈ 1 are contained in Ω1. As before, the Kontinuitätssatz tells us that

(3.5) U(P) :=
⋃
η∈P

Γ (ψ + η) ⊂ πΩ1(Ω̃ 1),

where P is any polydisc contained in D(0; δ)m.

Arguing exactly as before, we can find a sufficiently small polydisc P∗ ⊂ D(0; δ)m centered at the
origin, an appropriately chosen domain ω2 such that Ω2 ⊂ ω2 ⊂ Ω1, and a mapping j̃ : U(P∗)∪ω2

(here, U(P∗) is as defined in (3.5) above) such that

• j̃ ∈ O(U(P∗) ∪ ω2), and
• j̃ |ω2 ≡ j|ω2 .

We use this mapping j̃ exactly as in the previous two theorems to complete this proof. �
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4. Examples

We begin by showing that one can construct a Hartogs-type configuration Γ (F )∪(∂D×D) such
that supD |F | is as large as we want and such that functions holomorphic in any small neighbour-
hood of this configuration extend to D × D in the manner described in Theorem 1.1. A related
counterexample to this sort of a phenomenon is the case when Γ (F ) is a Wermer disc (see Example
4.2 below for a definition). In that case, there is no analytic continuation, provided supD |F | is suf-
ficiently large. We explain under the heading Example 4.2 why this does not contradict Theorem
1.1

Theorem 1.3 is not true if F occuring therein is replaced by an arbitrary smooth, Dm-valued
function. This is the content of Rosay’s counterexample in [8]. Under Example 4.3 below, we
discuss how Rosay’s counterexample fails to meet the hypotheses of Theorem 1.3.

We begin with our first example.

Example 4.1. An example showing that given any N ∈ N, there is a F ∈ C∞(D; C) such that
supD |F | > N , sup∂D |F | < 1, and such that small connected neighbourhoods of Γ (F ) ∪ (∂D ×D)
exhibit the analytic-continuation phenomenon described in Theorem 1.1.

We are given N ∈ N. Let χ ∈ C∞( [0,∞); [0, 1)) be a smooth cut-off on [0,∞) such that

χ|[1/(N+1),∞) ≡ N + (1/2)
N + 1

,

χ ≡ 0 in a relatively open neighbourhood of 0.

We define

F (reiθ) :=
χ(r)
r
e−iθ.

Clearly

|F (eiθ/(N + 1))| = N + (1/2) > N,

|F (ζ)| =
N + (1/2)
N + 1

< 1 ∀ζ ∈ ∂D,

r|A−1(r)| = χ(r) ≤ N + (1/2)
N + 1

< 1 ∀r ∈ (0, 1].

These conditions imply that for any connected neighbourhood Ω1 ⊃ Γ (F ) ∪ (∂D ×D), any con-
nected open set Ω2 satisfying (∂D × D) ⊂ Ω2 ⊂ Ω1 ∩ ({ |z| ≥ 1} × D), and for any f ∈ O(Ω1),
f |Ω2 extends holomorphically to D ×D.

Wermer presents an example of a function g ∈ C∞(D) [6] with the property that Γ (g) is totally
real, but g|∂D ≡ 0. This allows us to define a function F = Mg – where M > 0 is sufficiently large
– such that the configuration Γ (F )∪ (∂D×D) resists analytic continuation of the type described
in Theorem 1.1. We now explain how the relevant F fails to satisfy the hypothesis of Theorem
1.1.
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Example 4.2. Wermer’s disc.

The graph of the function

g(z, z) = z(1− |z|4) + iz(1− |z|2)

is a totally-real surface in C2. This follows from an easy computation; see details in [6, Example
6.1]. Therefore, the domain

Dδ := {(z, w) ∈ C2 : |z| < 1 + δ, |w − g(z)| < δ}

is a pseudoconvex domain for all δ > 0 sufficiently small. Notice that Dδ ⊃ ∂D × D(0, δ). Let
δ∗ > 0 be so small that D × {0} * Dδ∗ and Dδ∗ is pseudoconvex. Then, for each domain
Ω1 ⊃ Γ (g) ∪ (∂D × D(0; δ∗)) such that Ω1 ⊂ Dδ∗ , there would exist a function f ∈ O(Ω1) such
that f does not extend holomorphically to the bidisc D × D(0; δ∗), because Dδ∗ is a domain of
holomorphy but does not contain D × {0}. We now define

F (z) := 1
δ∗ g(z), D̃δ∗ := {(z, w) | (z, δ∗w) ∈ Dδ∗}.

By construction, D̃δ∗ is a pseudoconvex domain that contains Γ (F )∪(∂D×D) but does not contain
D × {0}. By our preceding remarks, the Hartogs-Chirka type configuration just constructed does
not admit analytic continuation in the manner described in Theorem 1.1

Notice that F (reiθ) = A−1(r)e−iθ, where

A−1(r) =
r

δ∗
{ (1− r4) + i(1− r2) }.

We will now show that

r|A−1(r)| =
r2

δ∗
{(1− r4)2 + (1− r2)2}1/2 � 1 for some r ∈ (0, 1] ,

whence Theorem 1.1 is inapplicable to the above configuration. For this purpose, we will need an
upper bound for the quantity δ∗ introduced above, and we make the following
Claim : δ∗ < 0.0061. To see this, we refer to the Berndtsson-S lodkowski inequality – see [1,
Prop.2.3/(b)] – determining when a surface of the form

S = {(z, w) ∈ Ω× C | |w −G(z)| = e−u(z)},

(here Ω is a domain in C, G and u are smooth functions, and u is real-valued) is pseudoconvex.
The desired inequality is

(4.1) S is pseudoconvex ⇐⇒ −uzz ≤ e2u|Gz|2 − eu|Gzz + 2uzGz|.

For Dδ∗ to be pseudoconvex, we require that the surface Sδ∗ := {(z, w) ∈ D×C | |w− g(z)| = δ∗}
be pseudoconvex. Applying (4.1) to the surface Sδ∗ yields the following restriction on δ∗.

0 < δ∗ ≤ (1− 3|z|4)2 + (1− 2|z|2)2

|z|
√

36|z|4 + 4
∀|z| ≤ 1.

In other words,

0 < δ∗ ≤ min
r∈[0,1]

(1− 3r4)2 + (1− 2r2)2

r
√

36r4 + 4
,

and one can use any computational software package to show that the right-hand side of the above
inequality is greater than 0.0061. Hence the claim.
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One can also compute that maxr∈[0,1] r
2{(1− r4)2 + (1− r2)2}1/2 ≈ 0.456. Thus

max
r∈[0,1]

r|A−1(r)| > 0.456
0.0061

� 1,

which violates condition (1.1).

Example 4.3. Rosay’s counterexample.

Rosay shows that one can find an arbitrarily small, strictly pseudoconvex neighbourhood Ω of
∂D × D2 and a D2-valued function F such that Γ (F ) ∪ (∂D × D2) is holomorphically convex.
Specifically

Ω := {(z1, z2, z3) ∈ C3 : {( |z1|2 − 1)2 + s1|z2|2}N +
∣∣ z3

N

∣∣2N

+ α{( |z1|2 − 1)2 + s1|z2|2 + |z3|2} < s2N + αs2},

where

• s > 0 is small, and s1 = s(1− δ) < s for a fixed, small δ > 0, and
• One first chooses N large enough that s2N

1 +1/N2N < s2N , and then chooses α sufficiently
small so as to ensure that ∂D ×D2 b Ω.

Write F = (F1, F2). In Rosay’s construction

F1(reiθ) := κχ(r)eiθ,

where χ ∈ C∞[0, 1] with 0 ≤ χ ≤ 1, such that χ ≡ 1 off a small relative neighbourhood of 0 ∈ [0, 1]
and χ ≡ 0 on a smaller neighbourhood of 0. The quantity κ will be described presently. The
function F2 is required to be identically zero in an open set contained in {reiθ : r ∈ supp(χ) },
and to satisfy ∂F1/∂z̄1 6= 0 wherever F1 ≡ 0. Therefore, F2 will have negative Fourier modes.

Our interest is in examining F1. The constant κ is so chosen that

Γ (F ) ∩ Ω = {(Reiθ, κeiθ, 0) : θ ∈ [0, 2π) },

and such that Γ (F ) ∩ Ω is a complex-tangential curve in the surface ∂Ω ∩ {z3 = 0}. Write
zj := xj + iyj , j = 1, 2. It is easy to determine what the magnitudes of κ and R (which is close to
1) should be by visualizing ω := Ω ∩ (R2 × {0}). Then (R, κ) are the coordinates of the point of
tangency, in the first quadrant, of the line through the origin that is tangential to ∂ω (then, the
complex span of this line contains the tangent line to the curve Γ (F ) ∩ Ω). By construction, the
point (1, s/s1) ∈ ∂ω lies below the line just described, whence the line x1 = x2 lies below this line,
in the first quadrant. Thus, in the notation of Theorem 1.3

κ/R := A11(R)/R > 1,

whence, by construction

A11(r)/r > 1 ∀r ∈ χ−1{1}.

This violates the condition (1.2).
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