1. Let I be an open interval and $f: I \longrightarrow \mathbb{R}$ be differentiable and injective on I. Then:
i) Show that $f(I)$ is an open interval.
ii) Suppose $y_{0} \in f(I)$ is such that $f^{\prime}\left(f^{-1}\left(y_{0}\right)\right) \neq 0$. Then, show that f^{-1} is differentiable at y_{0} and that

$$
\left(f^{-1}\right)^{\prime}\left(y_{0}\right)=\frac{1}{f^{\prime}\left(f^{-1}\left(y_{0}\right)\right)}
$$

Tip. You may assume without proof that f^{-1} is continuous.
2. Define the function $f: \mathbb{R} \longrightarrow\{0,1\}$ as follows:

$$
f(x):= \begin{cases}1, & \text { if } x \in \mathbb{Q} \\ 0, & \text { if } x \notin \mathbb{Q}\end{cases}
$$

Show that $\left.f\right|_{[a, b]} \notin \mathscr{R}([a, b])$ for any $a<b$.
3-5. Problems 7, 8, and 16 from "Baby" Rudin, Chapter 6.
6. Let $[a, b]$ be a compact interval and let $f, g \in \mathscr{R}([a, b])$. Let p and q be positive real numbers such that $p^{-1}+q^{-1}=1$. Prove Hölder's inequality:

$$
\left|\int_{a}^{b} f g(x) d x\right| \leq\left[\int_{a}^{b}|f(x)|^{p} d x\right]^{1 / p}\left[\int_{a}^{b}|g(x)|^{q} d x\right]^{1 / q}
$$

by completing the outline provided by parts $(a)-(c)$ of Problem 10 in "Baby" Rudin, Chapter 6.
7. Prove the following assertion:

Let $[a, b]$ be a compact interval and let $f:[a, b] \longrightarrow \mathbb{R}$ be a bounded function. Let \mathcal{D}_{f} denote the set of discontinuities of f. Suppose that, for each $n \in \mathbb{Z}_{+}$, there exists a pairwise disjoint collection of closed subintervals of $[a, b]: \mathscr{C}_{n}:=\left\{I_{1}^{(n)}, \ldots, I_{M(n)}^{(n)}\right\}$, such that

$$
\mathcal{D}_{f} \subset \bigcup_{i=1}^{M(n)} I_{j}^{(n)} \quad \text { and } \quad \sum_{i=1}^{M(n)} \text { length }\left(I_{j}^{(n)}\right) \leq \frac{1}{n}
$$

for each $n=1,2,3, \ldots$ Then $f \in \mathscr{R}([a, b])$.
by using the following hint:
Let $C>0$ be such that $|f(x)| \leq C$ for each $x \in[a, b]$. Fix $\varepsilon>0$. Show that there exists a partition on $[a, b]$

$$
\mathbb{P}: a=x_{0}<x_{1}<\cdots<x_{n-1}<x_{n}=b
$$

for which we may split the set $\{1, \ldots, n\}$ into a disjoint union $G \cup B$ such that

$$
\begin{gathered}
\sum_{j \in G}\left(M_{j}-m_{j}\right) \Delta x_{j}<\varepsilon / 2 ; \text { and } \\
\sum_{j \in B} \Delta x_{j}<\frac{\varepsilon}{4 C}
\end{gathered}
$$

Here M_{j} and m_{j} have the same meanings as introduced in class in defining the Riemann integral.

