MATH 221 : ANALYSIS I-REAL ANALYSIS AUTUMN 2018 HOMEWORK 12

Instructor: GAUTAM BHARALI

Assigned: NOVEMBER 17, 2018

1. Show that the converse of the Weierstrass *M*-test is false.

Tip. A convincing counterexample can be constructed where the ambient metric space (X, d) is simply \mathbb{R} and the target space is also \mathbb{R} .

2–6. Problems 3–5, 9 and 24 from "Baby" Rudin, Chapter 7. (**Caution:** The function space that we have denoted as $\mathcal{C}_b(X; \mathbb{R})$ in class is denoted by $\mathscr{C}(X)$ in Chapter 7.)

7. Work out Problem 17 from "Baby" Rudin, Chapter 7, skipping those theorems that belong to sections that we have not covered in class. Where the class $\mathcal{R}(\alpha)$ is referred to, take $\alpha = \mathsf{id}|_{[a,b]}$, where [a,b] is the domain of the integrand(s) in question.

8. Let (X, d_X) be a metric space and $S \subset X$. Formulate definitions for the terms "**pointwise** equicontinuous" and "pointwise bounded" for a family \mathscr{F} of functions on S taking values in a metric space (Y, d_Y) .

With X and S as above, let \mathscr{F} be a family of functions from S into Y that is pointwise equicontinuous and pointwise bounded. If S is compact, then show that \mathscr{F} is uniformly bounded.

9. Show that there exists a sequence of polynomials $\{p_n\}$ satisfying the properties

 $p_n(x) = p_n(-x) \quad \forall x \in \mathbb{R} \quad \text{and} \quad p_n(0) = 0,$

for each $n = 1, 2, 3, \ldots$, such that $p_n(x) \longrightarrow |x|$ uniformly on [-1, 1].