1. Recall the binary operations $+: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ and •: $\mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ given by Peano Arithmetic. Prove that both operations are commutative.
2. Let A be a non-zero natural number. We say that a natural number d divides $A-\operatorname{denoted}$ by $d \mid A$-if there exists some natural number k such that $A=k d$. Let p be a prime number. Assume the following fact: if a and b are non-zero natural numbers and $p \mid a b$, then either $p \mid a$ or $p \mid b$.
Now show that the equation $x^{2}=p$ has no rational solution.
3. Let S be a non-empty set, and let \sim be an equivalence relation on S. Recall that, for any $s \in S$, the equivalence class of s - denoted by $[s]$ - is defined as

$$
[s]:=\{x \in S: x \sim s\}
$$

Prove that \sim partitions S into disjoint equivalence classes.
4. Let $(S,<)$ be an ordered set and let E be a subset of S. If $\sup E$ exists, then show that it is unique.
5. Consider a set $A=\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\}$ on which we define two binary operations + and \cdot as follows:

$$
\begin{equation*}
\bar{a}+\bar{b}:=\overline{(a+b) \bmod 6}, \quad \bar{a} \cdot \bar{b}:=\overline{(a b) \bmod 6} \tag{1}
\end{equation*}
$$

(Given any $a \in \mathbb{N}$, we define " $a \bmod 6$ " as follows:
$a \bmod 6$
$:=$ the unique remainder belonging to the set $\{0,1,2, \ldots, 5\}$ obtained when dividing a by 6 .)
The operations between the unbarred variables a and b in (1) are the usual addition and multiplication on \mathbb{N}. Is $(A,+, \cdot)$ a field? Justifiy your answer.
6. Write $\mathbb{F}_{3}=\{\overline{0}, \overline{1}, \overline{2}\}$ on which we define the binary operations + and \cdot analogous to those in the previous problem:

$$
\bar{a}+\bar{b}:=\overline{(a+b) \bmod 3}, \quad \bar{a} \cdot \bar{b}:=\overline{(a b) \bmod 3}
$$

Show that $\left(\mathbb{F}_{3},+, \cdot\right)$ is a field.
Remark. The above holds true with any prime number replacing 3. The non-trivial step, in that case, is to show that multiplicative inverses exist - which follows from a result called Fermat's Little Theorem.

