1. Let \mathbb{C} denote the field of complex numbers (i.e., equipped with the standard addition and multiplication operations). Show that there cannot exist any order relation " $<$ " on \mathbb{C} that would make ($\mathbb{C},<$) an ordered field.
Hint. You may freely use without proof some of the consequences of being an ordered field given in the section entitled Fields in Chapter 1 of "Baby" Rudin.
2. Recall that if α is a positive cut, then we define

$$
\alpha^{-1}:=\{x \in \mathbb{Q}: \exists r \in \mathbb{Q} \text { such that } r<1 / x \text { and } r \notin \alpha\} \cup 0^{*} \cup\{0\} .
$$

(a) Define α^{-1} for a negative cut.
(b) Show that α^{-1} as defined is a cut for any $\alpha \neq 0^{*}$.
3. Read the proof of the Cauchy-Schwarz inequality on \mathbb{C}^{n} given in Chapter 1 of "Baby" Rudin. Using this proof, show the following statement:
For two vectors $\boldsymbol{a}=\left(a_{1}, \ldots, a_{n}\right), \boldsymbol{b}=\left(b_{1}, \ldots, b_{n}\right) \in \mathbb{C}^{n}$ the Cauchy-Schwarz inequality involving \boldsymbol{a} and \boldsymbol{b} occurs as an equality if and only if one vector is a scalar multiple of the other.
4. For any vector $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, define $\|\boldsymbol{x}\|:=\sqrt{\sum_{1 \leq j \leq n} x_{j}^{2}}$. Prove that

$$
|\|\boldsymbol{x}\|-\|\boldsymbol{y}\|| \leq\|\boldsymbol{x}-\boldsymbol{y}\| \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n} .
$$

5. Let A be a non-empty at most countable set and suppose, for each $\alpha \in A$, we are given a set B_{α} that is at most countable. We know that $S:=\bigcup_{\alpha \in A} B_{\alpha}$ is at most countable. Now suppose that A is countable, and assume that $B_{\alpha} \neq B_{\alpha^{\prime}}$ for $\alpha \neq \alpha^{\prime}$. Is S countable? If yes, then give a justification, else give a counterexample.
