MATH 221 : ANALYSIS I-REAL ANALYSIS AUTUMN 2018 HOMEWORK 2

Instructor: GAUTAM BHARALI

Assigned: AUGUST 17, 2018

1. Let \mathbb{C} denote the field of complex numbers (i.e., equipped with the standard addition and multiplication operations). Show that there **cannot** exist any order relation "<" on \mathbb{C} that would make (\mathbb{C} , <) an ordered field.

Hint. You may freely use **without proof** some of the consequences of being an ordered field given in the section entitled *Fields* in Chapter 1 of "Baby" Rudin.

2. Recall that if α is a positive cut, then we define

$$\alpha^{-1} := \{ x \in \mathbb{Q} : \exists r \in \mathbb{Q} \text{ such that } r < 1/x \text{ and } r \notin \alpha \} \cup 0^* \cup \{0\}.$$

- (a) Define α^{-1} for a negative cut.
- (b) Show that α^{-1} as defined is a cut for any $\alpha \neq 0^*$.

3. Read the proof of the Cauchy–Schwarz inequality on \mathbb{C}^n given in Chapter 1 of "Baby" Rudin. Using this proof, show the following statement:

For two vectors $\mathbf{a} = (a_1, \ldots, a_n)$, $\mathbf{b} = (b_1, \ldots, b_n) \in \mathbb{C}^n$ the Cauchy–Schwarz inequality involving \mathbf{a} and \mathbf{b} occurs as an equality if and only if one vector is a scalar multiple of the other.

4. For any vector
$$\boldsymbol{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$$
, define $\|\boldsymbol{x}\| := \sqrt{\sum_{1 \le j \le n} x_j^2}$. Prove that
 $\|\|\boldsymbol{x}\| - \|\boldsymbol{y}\|\| \le \|\boldsymbol{x} - \boldsymbol{y}\| \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$.

5. Let A be a non-empty at most countable set and suppose, for each $\alpha \in A$, we are given a set B_{α} that is at most countable. We know that $S := \bigcup_{\alpha \in A} B_{\alpha}$ is at most countable. Now suppose that A is countable, and assume that $B_{\alpha} \neq B_{\alpha'}$ for $\alpha \neq \alpha'$. Is S countable? If yes, then give a justification, else give a counterexample.