HOMEWORK 3

Instructor: GAUTAM BHARALI

Assigned: AUGUST 25, 2018

1. Let S be a non-empty subset of \mathbb{N}. Show that S contains a unique least element (with respect to the standard order " $<$ " on \mathbb{R}).

In the next two problems, given a set S, the power set of S - denoted by $\mathcal{P}(S)$ - will refer to the set of all subsets of S.
2. Let S be a non-empty set. Show that the power set of S has the same cardinality has the set of all functions from S to the set $\{0,1\}$.
3. Let S be an uncountable set. Show that:
(a) There exists an injective function from S into $\mathcal{P}(S)$.
(b) S does not have the same cardinality $\mathcal{P}(S)$.

Hint. The conclusions of Problem 2 above would be helpful.
4. (Problem 2 from Rudin, Chapter 2) A complex number is said to be an algebraic number if it is the root of an algebraic equation of the form

$$
x^{n}+a_{1} x^{n-1}+\cdots+a_{n-1} x+a_{n}=0
$$

for some $n \in \mathbb{Z}_{+}$, where a_{1}, \ldots, a_{n} are integers.
Show that the set of all algebraic integers is countable.
5. A graph $G:=G(V, E)$ is a pair of sets (V, E), where V is a non-empty, at most countable set, and $E \subset T(V)$, where

$$
T(V):=\{\{x, y\}: x, y \in V, x \neq y\}
$$

The set V is called the set of vertices of G, and E is called the set of edges of G. Consider the following definitions:

- Given $x \neq y \in V$, a path joining x to y is a finite collection of edges $\left\{\left\{x_{j}, y_{j}\right\} \in E: j=\right.$ $0, \ldots, N\}$ such that $x_{0}=x, y_{j-1}=x_{j}, j=1 \ldots N$, and $y_{N}=y$. The length of a path is the number of edges contained in it.
- The graph $G(V, E)$ is said to be connected if, for each $x \neq y \in V$, there is at least one path joining x to y.
- If $G(V, E)$ is a connected graph, define the function $d: V \times V \longrightarrow[0, \infty)$ by

$$
d(x, y)= \begin{cases}0, & \text { if } x=y \\ \min \{\operatorname{length}(P): P \text { is a path joining } x \text { to } y\}, & \text { if } x \neq y\end{cases}
$$

Given any connected graph $G=G(V, E)$, is (V, d) a metric space? If yes, then give justifications, else give a counterexample.

