MATH 221 : ANALYSIS I-REAL ANALYSIS AUTUMN 2018 HOMEWORK 4

Instructor: GAUTAM BHARALI

Assigned: AUGUST 31, 2018

1. Let (X, d) be a metric space and $\{S_{\alpha} : \alpha \in A\}$ an arbitrary collection of subsets of X. State whether the correct relation **in general** should be $B \supset C$ or $B \subset C$ or B = C, where

$$B = \bigcup_{\alpha \in A} \overline{S}_{\alpha} \quad \text{and} \quad C = \overline{\bigcup_{\alpha \in A} S_{\alpha}}.$$

If $B \neq C$ in general, then provide an example showing that the relevant inclusion could be a strict inclusion.

2. Given a metric space (X, d) and a set $S \subset X$, we say that a point $x \in S$ is an *interior point of* S if there exists an r > 0 such that $B(x; r) \subset S$. Show that S° = the set of all interior points of S.

3. Show that the set-theoretic density property of $\mathbb{Q} \subset \mathbb{R}$ is equivalent to saying that \mathbb{Q} is dense in \mathbb{R} endowed with the standard metric.

4. (Problem 24 from Rudin, Chapter 2) A metric space is called *separable* if it has a countable dense subset. Now suppose (X, d) is a metric space in which every infinite subset has a limit point. Show that X is separable.

5. In each of the following cases, determine using **only** the basic definition whether or not S is a compact subset of X (i.e., do **not** appeal to any theorems on compactness):

- (a) $(X,d) = \mathbb{R}$ equipped with the standard metric; $S = \{1/n = n : 1, 2, 3, ...\} \cup \{0\}$.
- (b) (X, d) = any set containing at least two points, equipped with the 0–1 metric; $S \subset X$ (your answer will depend on the nature of S; please give a **complete** discussion).
- (c) X =the set of all bounded sequences in \mathbb{R} ;

$$d(\{x_n\}_{n\in\mathbb{N}},\{y_n\}_{n\in\mathbb{N}}) := \sup_{n\in\mathbb{N}} |x_n - y_n|;$$

and $S = \{ \{x_n\}_{n \in \mathbb{N}} : x_n \in [-1, 1] \ \forall n \in \mathbb{N} \}$ (here, you will first need to show that the given d is a metric).