MATH 221 : ANALYSIS I-REAL ANALYSIS AUTUMN 2018 HOMEWORK 5

Instructor: GAUTAM BHARALI

Assigned: SEPTEMBER 8, 2018

1–3 Problems 19, 23 and 26 from Rudin, Chapter 2.

Hint. It might help to use the conclusion of Problem 4 from Homework 4.

4. Let $S \subset \mathbb{R}$ be a non-empty subset having the following property: Given any $x, y \in S$, x < y, and any real number z, if x < z < y, then $z \in S$. Show that S is either a bounded or an unbounded segment in \mathbb{R} .

5. Study the section entitled *Perfect Sets* in Chapter 2 of Rudin.

6. Fix a real number $\alpha \in (0,1)$. Let \mathscr{C}_{α} be a subset of [0,1] having a construction analogous to that of the Cantor middle-thirds set. Namely, let:

 $K_0 := [0, 1],$

 K_n := the union of the closed intervals obtained by removing from $K_{n-1}^{(j)}$, $j = 1, ..., 2^{n-1}$, the open interval of length $\alpha \cdot \text{length}(K_{n-1}^{(j)})$ centered at the midpoint of $K_{n-1}^{(j)}$, n = 1, 2, 3, ...,

where $K_{n-1}^{(1)}, \ldots, K_{n-1}^{(2^{n-1})}$ are the closed intervals whose union gives K_{n-1} . Emulate what you have studied about the Cantor middle-thirds set to show that:

- (a) \mathscr{C}_{α} is non-empty and is a perfect set.
- (b) the sum of the lengths of the disjoint open intervals removed from [0, 1] in the construction of \mathscr{C}_{α} equals 1.
- 7. Consider the sequence $\{a_n\}$, where

$$a_n = (n^2 + 1)^{1/4} - \sqrt{n+1}, \quad n = 1, 2, 3, \dots$$

Does this sequence converge? Give **justifications** for your answer, and if the sequence converges, then deduce its limit.

8. Let $\{a_n\}$ be a complex sequence that converges to A. Then, show that the sequence of arithmetic means

$$u_n := \frac{a_1 + \dots + a_n}{n}, \quad n = 1, 2, 3, \dots,$$

is also convergent.

Tip. It would help to guess what $\{\mu_n\}$ converges to!

ŀ