1-3 Problems 19, 23 and 26 from Rudin, Chapter 2.
Hint. It might help to use the conclusion of Problem 4 from Homework 4.
4. Let $S \subset \mathbb{R}$ be a non-empty subset having the following property: Given any $x, y \in S, x<y$, and any real number z, if $x<z<y$, then $z \in S$. Show that S is either a bounded or an unbounded segment in \mathbb{R}.
5. Study the section entitled Perfect Sets in Chapter 2 of Rudin.
6. Fix a real number $\alpha \in(0,1)$. Let \mathscr{C}_{α} be a subset of $[0,1]$ having a construction analogous to that of the Cantor middle-thirds set. Namely, let:
$K_{0}:=[0,1]$,
$K_{n}:=$ the union of the closed intervals obtained by removing from $K_{n-1}^{(j)}, j=1, \ldots, 2^{n-1}$, the open interval of length $\alpha \cdot \operatorname{length}\left(K_{n-1}^{(j)}\right)$ centered at the midpoint of $K_{n-1}^{(j)}, n=1,2,3, \ldots$,
where $K_{n-1}^{(1)}, \ldots, K_{n-1}^{\left(2^{n-1}\right)}$ are the closed intervals whose union gives K_{n-1}. Emulate what you have studied about the Cantor middle-thirds set to show that:
(a) \mathscr{C}_{α} is non-empty and is a perfect set.
(b) the sum of the lengths of the disjoint open intervals removed from $[0,1]$ in the construction of \mathscr{C}_{α} equals 1 .
7. Consider the sequence $\left\{a_{n}\right\}$, where

$$
a_{n}=\left(n^{2}+1\right)^{1 / 4}-\sqrt{n+1}, \quad n=1,2,3, \ldots
$$

Does this sequence converge? Give justifications for your answer, and if the sequence converges, then deduce its limit.
8. Let $\left\{a_{n}\right\}$ be a complex sequence that converges to A. Then, show that the sequence of arithmetic means

$$
\mu_{n}:=\frac{a_{1}+\cdots+a_{n}}{n}, \quad n=1,2,3, \ldots
$$

is also convergent.
Tip. It would help to guess what $\left\{\mu_{n}\right\}$ converges to!

