MATH 221 : ANALYSIS I-REAL ANALYSIS
 AUTUMN 2018
 HOMEWORK 6

Instructor: GAUTAM BHARALI

Assigned: SEPTEMBER 15, 2018

1. Let (X, d) be a metric space and let $\left\{x_{n}\right\}$ be a sequence in X. Show that $\left\{x_{n}\right\}$ converges to a point $x_{0} \in X$ if and only if every subsequence $\left\{x_{n_{k}}\right\}_{k \in \mathbb{Z}_{+}}$converges to x_{0}.

2-5. Problems 9, 20-22 from Rudin, Chapter 3.
6. Fix a real number $a>0$. Recall that if $p \in \mathbb{Q}$ and if $p=m / n$ for some $m \in \mathbb{Z}$ and $n \in \mathbb{Z}_{+}$, then

$$
\begin{equation*}
a^{p}:=\left(a^{m}\right)^{1 / n} . \tag{1}
\end{equation*}
$$

Given this, if now p is an arbitrary real number, then we define

$$
\begin{equation*}
a^{p}:=\sup \left\{a^{q}: q \in \mathbb{Q} \text { and } q \leq p\right\} . \tag{2}
\end{equation*}
$$

Assuming, for the moment, that the definition (1) does not depend on the choice of the representative m / n of p, show that:
(a) for $p \in \mathbb{Q}$ the two definitions (1) and (2) of a^{p} agree.
(b) for any $x, y \in \mathbb{R}, a^{x} a^{y}=a^{x+y}$.
7. Let $\left\{a_{n}\right\}$ be a sequence of real numbers. Define

$$
\begin{aligned}
A_{k} & :=\inf \left\{a_{k}, a_{k+1}, a_{k+2}, \ldots\right\} \\
B_{k} & :=\sup \left\{a_{k}, a_{k+1}, a_{k+2}, \ldots\right\} .
\end{aligned}
$$

Show that

$$
\liminf _{n \rightarrow \infty} a_{n}=\lim _{k \rightarrow \infty} A_{k}, \quad \text { and } \quad \limsup _{n \rightarrow \infty} a_{n}=\lim _{k \rightarrow \infty} B_{k} .
$$

Note. A part of what you need to show is that the sequences $\left\{A_{k}\right\}$ and $\left\{B_{k}\right\}$ are convergent in the extended real number system.
8. Complete the following outline for a proof that the interval $[0,1)$ is uncountable. Given a number $x \in[0,1)$, let $\mathcal{I}_{0}(x):=[0,1)$ and define the intervals

$$
\mathcal{I}_{n+1}(x):= \begin{cases}{\left[\inf \mathcal{I}_{n}(x), \mu_{n}(x)\right),} & \text { if } x<\mu_{n}(x), \\ {\left[\mu_{n}(x), \sup \mathcal{I}_{n}(x)\right),} & \text { if } x \geq \mu_{n}(x),\end{cases}
$$

for $n=0,1,2, \ldots$, where $\mu_{n}(x):=\left(\inf \mathcal{I}_{n}(x)+\sup \mathcal{I}_{n}(x)\right) / 2$: i.e., the midpoint of $\mathcal{I}_{n}(x)$. Let \mathfrak{S} denote the set of all sequences in $\{0,1\}$. We now define a function $F:[0,1) \rightarrow \mathfrak{S}$ as follows: write $F(x)=\left\{s_{n}(x)\right\}$ where

$$
s_{n}(x):= \begin{cases}0 & \text { if } x<\mu_{n-1}(x), \\ 1, & \text { if } x \geq \mu_{n-1}(x)\end{cases}
$$

for $n=1,2,3, \ldots$.
(a) Show that the series

$$
\sum_{n=1}^{\infty} \frac{s_{n}(x)}{2^{n}}
$$

converges, and that its sum is x. (Remark. This problem shows that the "binary representation" of x-i.e., the expression " $0 . s_{1}(x) s_{2}(x) s_{3}(x) \ldots$ ", which is analogous to the common decimal expressions for real numbers - exists.)
(b) Show that F is not surjective (use the conclusion of (a) above).
(c) Show that $\mathfrak{S} \backslash \operatorname{range}(F)$ is countable.
(d) Use the conclusions of $(a)-(c)$ to show that $[0,1)$ is uncountable.
9. Show that the series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}
$$

converges.
Hint. The partial sums of the above series have a feature that allows you to use a known convergence theorem.

