MATH 221 : ANALYSIS I-REAL ANALYSIS AUTUMN 2018 HOMEWORK 7

Instructor: GAUTAM BHARALI

Assigned: SEPTEMBER 29, 2018

1. Prove that the set $[0,1] \times [0,1] \subset \mathbb{R}^2$ is uncountable. **Hint.** You would need to use a result from Homework 6.

2. In class, we had proved the following:

Theorem. Let (X, d) be a metric space, $S \subset X$, a a limit point of S and $f, g: S \to \mathbb{C}$. Suppose

$$\lim_{x \to a} f(x) = \alpha \quad and \quad \lim_{x \to a} g(x) = \beta$$

Then,

(a) $\lim_{x \to a} (f+g)(x) = \alpha + \beta$.

- (b) $\lim_{x\to a} (fg)(x) = \alpha\beta$.
- (c) Suppose $\beta \neq 0$. Then, there exists an r > 0 such that $g(x) \neq 0$ for each $x \in S \cap B(a; r)$. Furthermore, $\lim_{x \to a} (f/g)(x)$ exists and

$$\lim_{x \to a} \left(\frac{f}{g}\right)(x) = \frac{\alpha}{\beta}.$$

by appealing to the sequential definition of the limit of a function (and, thus, to theorems for convergent sequences). Redo these proofs using the " ε - δ definition" of the limit of a function. **Remark.** These proofs will require more effort, which reveals the usefulness of having multiple equivalent definitions.

3. Any rational number x can be written uniquely as x = m/n, where $m \in \mathbb{Z}$, $n \in \mathbb{Z}_+$, and such that there is no $d \in \mathbb{N} \setminus \{0, 1\}$ dividing both m and n—with the understanding that we take n = 1 when x = 0. (You may use this fact **without proof.** See Homework 1 for what "d divides m (or n)" means.) Define $f : \mathbb{R} \to \mathbb{Q}$ as follows:

$$f(x) := \begin{cases} 0, & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}, \\ 1/n, & \text{if } x \in \mathbb{Q}, \end{cases}$$

where n is uniquely associated to $x \in \mathbb{Q}$ as explained above. Show that f is continuous at each irrational point and discontinuous at each rational point.

4. Given a non-empty set S, we say that $f: S \to \mathbb{C}$ is **bounded** if there exists a constant M > 0 such that |f(x)| < M for every $x \in S$.

Prove that a set $S \in \mathbb{R}^n$ is compact if and only if every complex-valued continuous function $f: S \to \mathbb{C}$ is bounded.