HOMEWORK 8

1. Read the section entitled Discontinuities in Chapter 4 of "Baby" Rudin.
2. Consider the function $f:[a, b] \longrightarrow \mathbb{R}$ and let $x_{0} \in(a, b)$. Give a rigorous argument for the fact that f is continuous at x_{0} if and only if $f\left(x_{0}+\right)$ and $f\left(x_{0}-\right)$ exist and $f\left(x_{0}+\right)=f\left(x_{0}-\right)=f\left(x_{0}\right)$.
3. Let S_{1} and S_{2} be non-empty sets and let $f: S_{1} \longrightarrow S_{2}$. Let \mathscr{A} be a non-empty subset of $\mathcal{P}\left(S_{1}\right)$ and let \mathscr{B} be a non-empty subset of $\mathcal{P}\left(S_{2}\right)$. Prove the following:

$$
\begin{aligned}
f\left(\cup_{A \in \mathscr{A}} A\right) & =\cup_{A \in \mathscr{A}} f(A), \\
f\left(\cap_{A \in \mathscr{A}} A\right) & \subset \cap_{A \in \mathscr{A}} f(A), \\
f^{-1}\left(\cup_{B \in \mathscr{B}} B\right) & =\cup_{B \in \mathscr{B}} f^{-1}(B), \\
f^{-1}\left(\cap_{B \in \mathscr{B}} B\right) & =\cap_{B \in \mathscr{B}} f^{-1}(B) .
\end{aligned}
$$

4. Let $X=[0,+\infty)$ (endowed with the usual metric). Let $n \in \mathbb{Z}_{+}$, and write $f_{n}(x)=x^{n}$ for each $x \in X$. Give all values of $n \in \mathbb{Z}_{+}$for which $f_{n}: X \longrightarrow \mathbb{R}$ is not uniformly continuous.

5-9. Problems 6, 7 and 20-22 from "Baby" Rudin, Chapter 4.
10. Let $f:[0,1] \longrightarrow \mathbb{R}$ be a continuous function and assume that $f(0)=f(1)$. Show that there exists a point $x_{0} \in[0,1 / 2]$ such that $f\left(x_{0}\right)=f\left(x_{0}+\frac{1}{2}\right)$.

