MATH 221 : ANALYSIS I-REAL ANALYSIS AUTUMN 2018 HOMEWORK 8

Instructor: GAUTAM BHARALI

Assigned: OCTOBER 6, 2018

1. Read the section entitled *Discontinuities* in Chapter 4 of "Baby" Rudin.

2. Consider the function $f : [a, b] \longrightarrow \mathbb{R}$ and let $x_0 \in (a, b)$. Give a rigorous argument for the fact that f is continuous at x_0 if and only if $f(x_0+)$ and $f(x_0-)$ exist and $f(x_0+) = f(x_0-) = f(x_0)$.

3. Let S_1 and S_2 be non-empty sets and let $f: S_1 \longrightarrow S_2$. Let \mathscr{A} be a non-empty subset of $\mathcal{P}(S_1)$ and let \mathscr{B} be a non-empty subset of $\mathcal{P}(S_2)$. Prove the following:

 $f(\bigcup_{A\in\mathscr{A}} A) = \bigcup_{A\in\mathscr{A}} f(A),$ $f(\cap_{A\in\mathscr{A}} A) \subset \cap_{A\in\mathscr{A}} f(A),$ $f^{-1}(\bigcup_{B\in\mathscr{B}} B) = \bigcup_{B\in\mathscr{B}} f^{-1}(B),$ $f^{-1}(\cap_{B\in\mathscr{B}} B) = \cap_{B\in\mathscr{B}} f^{-1}(B).$

4. Let $X = [0, +\infty)$ (endowed with the usual metric). Let $n \in \mathbb{Z}_+$, and write $f_n(x) = x^n$ for each $x \in X$. Give all values of $n \in \mathbb{Z}_+$ for which $f_n : X \longrightarrow \mathbb{R}$ is **not** uniformly continuous.

5-9. Problems 6, 7 and 20-22 from "Baby" Rudin, Chapter 4.

10. Let $f: [0,1] \longrightarrow \mathbb{R}$ be a continuous function and assume that f(0) = f(1). Show that there exists a point $x_0 \in [0, 1/2]$ such that $f(x_0) = f(x_0 + \frac{1}{2})$.