MATH 221 : ANALYSIS I-REAL ANALYSIS

AUTUMN 2018

QUIZ 2

1. Let S be a non-empty subset of \mathbb{N}. Show that S contains a unique least element (with respect to the standard order " $<$ " on \mathbb{R}).

Solution. There are several different approaches to solving the above problem. We present below one of these approaches.

Let S be a non-empty subset of \mathbb{N}. First, we shall show that if S has a least element, then it is unique. If possible, let there be two elements $a, b \in S$ with the following properties:

$$
\begin{equation*}
a \leq s \quad \forall s \in S \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
b \leq s \quad \forall s \in S \tag{2}
\end{equation*}
$$

Since $a \in S$, we have $b \leq a$ from (2). Similarly we obtain $a \leq b$ from (1). So $a=b$, whence uniqueness follows.

We now address the issue of existence. We shall consider two cases.
Case 1. S is a finite subset of \mathbb{N}.
Let us denote the cardinality of S by $|S|$. We shall apply induction on $|S|$ and show that any finite subset of \mathbb{N} has a least element.

If $|S|=1$, then this is trivial. Suppose that any set with cardinality less than or equal to n has a least element, where $n \in \mathbb{Z}_{+}$. Now, let S be an arbitrary subset of \mathbb{N} containing $n+1$ elements. We fix an element $s_{0} \in S$. If there is no element $s \in S$ satisfying $s<s_{0}$, then s_{0} is the least element of S. If we can find an $s_{1} \in S$ satisfying $s_{1}<s_{0}$, then we look at the set $\widetilde{S}=S-\left\{s_{0}\right\}$. Clearly, $|\widetilde{S}|=n$. By our induction hypothesis, \widetilde{S} has a least element. Since the latter element is less than or equal to s_{1} and $s_{1}<s_{0}$, we conclude that S itself contains a least element. Now, by induction, we conclude that every finite subset of \mathbb{N} has a least element.
Case 2. S is an infinite subset of \mathbb{N}.
Since $S \neq \emptyset$, we can choose an $n \in S$ and form the finite subset $S_{n}=\{m \in S: m \leq n\}$ of S. Clearly, $n \in S_{n} \cap S$. Since S_{n} is finite and non-empty, Case 1 tells us that S_{n} contains a least element. Let s be this element. Now let us consider an element l in S. If $l \in S_{n}$, then clearly $s \leq l$. If $l \in S \backslash S_{n}$, then we have $n<l$. This relation and the fact that " $<$ " is transitive imply that $s<l$. Thus s is the least element of S.

The above, together with the discussion of uniqueness, completes the proof.

