1. Let $X=$ the set of all bounded sequences in \mathbb{R} and define

$$
d\left(\left\{x_{n}\right\},\left\{y_{n}\right\}\right):=\sup _{n \in \mathbb{Z}_{+}}\left|x_{n}-y_{n}\right|
$$

on $X \times X$.
(a) (4 marks) Show that d satisfies the triangle inequality.
(b) (6 marks) Assume without proof that d is also positive definite and symmetric (do not waste time showing these; they are trivialities). Now determine whether or not the subset $S=\left\{\left\{x_{n}\right\}: x_{n} \in[-1,1] \forall n \in \mathbb{Z}_{+}\right\} \subset X$ is compact.

Solution. (a) Given three sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ and $\left\{z_{n}\right\}$, for each n, we have

$$
\begin{equation*}
\left|x_{n}-y_{n}\right| \leq\left|x_{n}-z_{n}\right|+\left|z_{n}-y_{n}\right| . \tag{1}
\end{equation*}
$$

Fix an $m \in \mathbb{Z}_{+}$. Now observe that

$$
\left|x_{m}-z_{m}\right| \leq \sup _{k \in \mathbb{Z}_{+}}\left|x_{k}\right|+\sup _{k \in \mathbb{Z}_{+}}\left|z_{k}\right|<\infty
$$

since $\left\{x_{n}\right\},\left\{y_{n}\right\}$ are bounded sequences. Thus, $\sup _{k \in \mathbb{Z}_{+}}\left|x_{k}-z_{k}\right|$ exists and by a similar argument, $\sup _{k \in \mathbb{Z}_{+}}\left|z_{k}-y_{k}\right|$ exists. Thus, for any fixed n, by (1)

$$
\begin{aligned}
\left|x_{n}-y_{n}\right| \leq & \sup _{k \in \mathbb{Z}_{+}}\left|x_{k}-z_{k}\right|+\sup _{k \in \mathbb{Z}_{+}}\left|z_{k}-y_{k}\right| \\
& =d\left(\left\{x_{l}\right\},\left\{z_{l}\right\}\right)+d\left(\left\{z_{l}\right\},\left\{y_{l}\right\}\right) .
\end{aligned}
$$

Thus, by the properties of the least upper bound:

$$
d\left(\left\{x_{l}\right\},\left\{y_{l}\right\}\right)=\sup _{k \in \mathbb{Z}_{+}}\left|x_{k}-y_{k}\right| \leq d\left(\left\{x_{l}\right\},\left\{z_{l}\right\}\right)+d\left(\left\{z_{l}\right\},\left\{y_{l}\right\}\right) .
$$

(b) Consider the set $\left\{\delta^{(n)}: n \in \mathbb{Z}_{+}\right\} \subset S$, write $\delta^{(n)}=\left\{\delta_{m}^{(n)}\right\}_{m \in \mathbb{Z}_{+}}$, where

$$
\delta_{m}^{(n)}= \begin{cases}1, & \text { if } m=n \tag{2}\\ 0, & \text { otherwise }\end{cases}
$$

Then by construction:

$$
d\left(\delta^{(n)}, \delta^{(\nu)}\right)=1 \text { whenever } \nu \neq n
$$

Now consider the following open cover of S

$$
\mathcal{C}:=\left\{B\left(\left\{x_{n}\right\} ; 1 / 2\right):\left\{x_{n}\right\} \in S\right\} .
$$

Now, suppose \mathcal{C} admits a finite subcover of S, say \mathcal{C}^{\prime}. Pick $B\left(\left\{x_{n}\right\} ; 1 / 2\right)$ belonging to this subcover; call this open set \mathcal{O}. Now, if $n_{\mathcal{O}} \in \mathbb{Z}_{+}$such that $\delta^{\left(n_{\mathcal{O}}\right)} \in \mathcal{O}$, then consider $\nu \neq n_{\mathcal{O}}$. By (2)

$$
1=d\left(\delta^{\left(n_{\mathcal{O}}\right)}, \delta^{(\nu)}\right) \leq d\left(\delta^{\left(n_{\mathcal{O}}\right)},\left\{x_{n}\right\}\right)+d\left(\left\{x_{n}\right\}, \delta^{(\nu)}\right)
$$

This implies

$$
\left.\frac{1}{2}<d\left(\left\{x_{n}\right\}, \delta^{(\nu)}\right)\right)
$$

As \mathcal{O} denotes an arbitrary element of the above finite subcover, the last inequality shows that each \mathcal{O} contains at most one point from the collection $\left\{\delta^{(n)}: n \in \mathbb{Z}_{+}\right\}$, which is infinite. This contradicts the fact that \mathcal{C}^{\prime} covers S. Thus \mathcal{C} is an open cover admitting no finite subcover. Hence S is not compact.

