1. Let $f:[0,1] \longrightarrow \mathbb{R}$ be a continuous function and assume that $f(0)=f(1)$. Show that there exists a point $x_{0} \in[0,1 / 2]$ such that $f\left(x_{0}\right)=f\left(x_{0}+\frac{1}{2}\right)$.

Solution. Define the function $g:[0,1 / 2] \rightarrow \mathbb{R}$ by

$$
g(x)=f(x)-f\left(x+\frac{1}{2}\right) .
$$

We first show that $f\left(\cdot+\frac{1}{2}\right)$ is a continuous function on $[0,1 / 2]$. The function $[0,1 / 2] \ni x \mapsto x+\frac{1}{2}$ is continuous and its range is contained in $[0,1]=\operatorname{dom}(f)$. Thus, $f\left(\cdot+\frac{1}{2}\right)$, being a composition of two continuous functions, is continuous.

By the continuity of $f\left(\cdot+\frac{1}{2}\right)$ and of f, we conclude that g is continuous on $[0,1 / 2]$.
Now, we substitute to get

$$
g(0)=f(0)-f\left(\frac{1}{2}\right) \quad \text { and } \quad g\left(\frac{1}{2}\right)=f\left(\frac{1}{2}\right)-f(1) .
$$

Since $f(0)=f(1)$, we have

$$
\begin{equation*}
g(0)=-g\left(\frac{1}{2}\right) . \tag{1}
\end{equation*}
$$

We now consider the following two cases.
Case (i) $g(0)=0$.
In this case, by (1), $g\left(\frac{1}{2}\right)=0$. Thus $x_{0}=0$ has the desired property.
Case (ii) $g(0) \neq 0$.
In this case, 0 lies between $g(0)$ and $g\left(\frac{1}{2}\right)$ due to (1). As g is continuous, by the Intermediate Value Theorem, there is a point $x_{0} \in(0,1 / 2)$ such that $g\left(x_{0}\right)=0$. This implies:

$$
f\left(x_{0}\right)=f\left(x_{0}+\frac{1}{2}\right) .
$$

This completes the proof.

