1. Let $a \in \mathbb{R}$. Let $f, g:[a,+\infty) \longrightarrow \mathbb{R}$ be two continuous functions with $f(a)=g(a)$. Suppose f and g are differentiable on $(a,+\infty)$ and $f^{\prime} \geq g^{\prime}$ on $(a,+\infty)$. Then how are f and g related? If you feel that there is, in general, a relation, then give a justification. Alternatively, give examples in support of your answer if you feel there is no relation in general.

Solution. Consider the function $G(x):=f(x)-g(x), x \in[a,+\infty)$. By hypothesis

$$
\begin{equation*}
G^{\prime}(x) \geq 0 \forall x \in(a,+\infty) . \tag{1}
\end{equation*}
$$

Fix a point $y \in(a,+\infty)$. The function $\left.G\right|_{[a, y]}$ satisfies all the properties of Lagrange's Mean Value Theorem. Thus:

$$
\begin{equation*}
G(y)-G(a)=G^{\prime}(c)(y-a) \tag{2}
\end{equation*}
$$

for some $c \in(a, y)$. By definition, $G(a)=0$. Thus, from (1) and (2)

$$
G(y)-G(a)=G(y) \geq 0 .
$$

Since the y above was arbitrary, we conclude that $G \geq 0$, whence $f \geq g$.

