1. Define the function $f: \mathbb{R} \longrightarrow\{0,1\}$ as follows:

$$
f(x):= \begin{cases}1, & \text { if } x \in \mathbb{Q} \\ 0, & \text { if } x \notin \mathbb{Q}\end{cases}
$$

Show that $\left.f\right|_{[a, b]} \notin \mathcal{R}([a, b])$ for any $a<b$.
Tip. You may freely use - without proof - any fact discussed in class, or assigned for homework, about the number systems \mathbb{Q} and \mathbb{R}.

Solution. Fix $a, b \in \mathbb{R}, a<b$. By the characterization for a bounded function to be in $\mathcal{R}([a, b])$, it suffices to show that:

$$
\begin{equation*}
\exists \epsilon_{0}>0 \text { such that for any partition } \mathcal{P} \text { on }[a, b], U(\mathcal{P}, f)-L(\mathcal{P}, f) \geq \epsilon_{0} \tag{1}
\end{equation*}
$$

To this end, write

$$
\mathcal{P}: a=x_{0}<x_{1}<\cdots<x_{N}=b
$$

For any $j=1, \ldots, N$:
(a) by the density of \mathbb{Q} in $\mathbb{R}, \exists x_{j}^{*} \in \mathbb{Q}$ such that $x_{j-1}<x_{j}^{*}<x_{j}$, whence

$$
M_{j}:=\sup _{x_{j-1} \leq x \leq x_{j}} f(x)=f\left(x_{j}^{*}\right)=1
$$

(b) $\left[x_{j-1}, x_{j}\right]$ is in bijective correspondence with $[0,1]$, whence it is uncountable. As $\mathbb{Q} \cap\left[x_{j-1}, x_{j}\right]$ is countable, $\exists x_{j}^{\prime} \in\left[x_{j-1}, x_{j}\right]-\mathbb{Q}$. Thus

$$
m_{j}:=\inf _{x_{j-1} \leq x \leq x_{j}} f(x)=f\left(x_{j}^{\prime}\right)=0
$$

From (a) and (b), we have

$$
U(\mathcal{P}, f)-L(\mathcal{P}, f)=\sum_{j=1}^{N}\left(M_{j}-m_{j}\right) \triangle x_{j}=b-a
$$

Clearly, (1) holds true for any $\epsilon_{0} \in(0, b-a)$. Thus $f \notin \mathcal{R}([a, b])$.

