MATH 222 : ANALYSIS II – MEASURE & INTEGRATION SPRING 2020 HOMEWORK 10

Instructor: GAUTAM BHARALI

Assigned: MAY 15, 2020

1. Let (X, \mathcal{F}) be a measurable space and let μ_1, μ_2 be two measures on \mathcal{F} . Suppost **at least one** of $\{\mu_1, \mu_2\}$ is a finite measure. Show that the set function defined by

$$\nu(E) := \mu_1(E) - \mu_2(E) \quad \forall E \in \mathcal{F}$$

is a signed measure.

2. Let (X, \mathcal{F}) be a measurable space and let ν be a complex measure on it. Show that $\operatorname{Re}(\nu)$ and $\operatorname{Im}(\nu)$ are signed measures.

3. Let $F : \mathbb{R} \longrightarrow \mathbb{R}$ be a bounded monotone function. Show that F is of bounded variation and give a formula for its total variation $\Lambda(F)$.

4. Let $F : \mathbb{R} \longrightarrow \mathbb{R}$ be a periodic function—i.e., $\exists T \in (0, +\infty)$ such that $F(x+T) = F(x) \ \forall x \in \mathbb{R}$. When is F of bounded variation?

Note. This problem shows that being of bounded variation is quite a restrictive condition. While the class BV contains many functions that are not even continuous (e.g., see the previous problem), plenty of **very well-behaved** functions fail to be of bounded variation.

5. Let $F : \mathbb{R} \longrightarrow \mathbb{R}$.

(a) Let $a < b \in \mathbb{R}$. Show that

$$V_F(b) - V_F(a) = \sup \bigg\{ \sum_{j=1}^N |F(x_j) - F(x_{j-1})| : N \in \mathbb{Z}_+, \ a = x_0 < x_1 < \dots < x_N = b \bigg\}.$$

(b) Since the right-hand side of the above identity depends only on the values F takes on [a, b]:

- We call $(V_F(b) V_F(b))$ the total variation of F on [a, b], which we denote by $\Lambda(F; [a, b])$.
- We say that a function $f:[a,b] \longrightarrow \mathbb{R}$ is of bounded variation, denoted $f \in BV[a,b]$, if and only if $\Lambda(f;[a,b]) < \infty$.

Now define

$$F(x) := \begin{cases} x \sin(1/x), & \text{if } x \in \mathbb{R} \setminus \{0\}, \\ 0, & \text{if } x = 0. \end{cases}$$

Show that $F|_{[a,b]} \notin BV[a,b]$ if a = 0.

6. Making use of the Hahn Decomposition Theorem, prove the following version of the Jordan Decomposition Theorem:

Let (X, \mathcal{F}) be a measurable space and let ν be a signed measure on it. Show that there exists a unique pair of measures $(\mu_{\nu}^+, \mu_{\nu}^-)$ such that

$$\nu = \mu_{\nu}^{+} - \mu_{\nu}^{-}$$
 and $\mu_{\nu}^{+} \perp \mu_{\nu}^{-}$.