MATH 222 : ANALYSIS II – MEASURE & INTEGRATION SPRING 2020 HOMEWORK 12

Instructor: GAUTAM BHARALI

Assigned: MAY 29, 2020

Note: In what follows, if (X, \mathcal{F}, μ) is a measure space, then $\mathbb{L}^{p}(X, \mu)$ — without mention of the underlying field — will denote the \mathbb{L}^{p} -space arising from \mathbb{R} -valued measurable functions.

1. Let (X, \mathcal{F}, μ) be a σ -finite measure space and let ν be a σ -finite signed measure on \mathcal{F} . Show that for any $E \in \mathcal{F}$ such that $\chi_E \in \mathbb{L}^1(X, \nu)$,

$$\chi_E\left(\frac{d\nu}{d\mu}\right) \in \mathbb{L}^1(X,\mu), \text{ and}$$

 $\int_X \chi_E d\nu = \int_X \chi_E\left(\frac{d\nu}{d\mu}\right) d\mu.$

2. Let $(V, \|\cdot\|)$ be a complete normed linear space (with respect to the metric induced by $\|\cdot\|$). Show that $(V^*, \|\cdot\|_{V^*})$ is complete.

Remark. A normed linear space that is complete with respect to the distance induced by the norm is called a *Banach space*.

3. Let (X, \mathcal{F}) be a measurable space and let

 $M(\mathcal{F}) := \{ \nu : \mathcal{F} \longrightarrow \mathbb{R} \mid \nu \text{ is a signed measure} \}.$

In view of the fact that each $\nu \in M(\mathcal{F})$ takes values in \mathbb{R} , we can define

 $\nu + \rho$ and $c\nu \quad \forall \nu, \rho \in M(\mathcal{F})$ and $\forall c \in \mathbb{R}$

in the obvious manner. Define $\|\nu\| := |\nu|(X)$. Show that $(M(\mathcal{F}), \|\cdot\|)$ is a normed linear space over \mathbb{R} .

Remark. The norm $\|\cdot\|$ on $M(\mathcal{F})$ defined above is called the *total-variation norm*.

4. Let (X, \mathcal{F}, μ) be a measure space and fix $p: 1 \leq p \leq +\infty$. Let q denote the conjugate exponent. Fix a $g \in \mathbb{L}^q(X, \mu)$, write

$$\lambda([f]) := \int_X fg \, d\mu \,\,\forall f \text{ belonging to } \mathbb{L}^p(X,\mu),$$

and show that (i) the integral on the right-hand side exists; (ii) the left-hand side is well-defined (i.e., is independent of the choice of the representative of $[f] \in \mathbb{L}^{p}(X,\mu)$ and makes $\lambda : \mathbb{L}^{p}(X,\mu) \longrightarrow \mathbb{R}$ a bounded linear functional; and (iii) $\|\lambda\|_{(\mathbb{R}^{p})^{*}} \leq \|g\|_{q}$.

5. Define $\mathcal{C}_0(\mathbb{R}^n; \mathbb{F})$, where $\mathbb{F} = \mathbb{R}$ or \mathbb{C} , to be the closure of $\mathcal{C}_c(\mathbb{R}^n; \mathbb{F})$ with respect to the metric induced by the \mathbb{L}^{∞} -norm. Show that

$$\mathcal{C}_0(\mathbb{R}^n;\mathbb{F}) = \left\{ f: \mathbb{R}^n \longrightarrow \mathbb{F} \mid f \text{ is continuous, and } \lim_{\|x\| \to +\infty} f(x) = 0 \right\}$$

6. Let (X_i, \mathcal{F}_i) be measure spaces and let μ_i, ν_i be σ -finite (positive) measures on \mathcal{F}_i , i = 1, 2. Suppose $\nu_i \ll \mu_i$, i = 1, 2. Show that $(\nu_1 \times \nu_2) \ll (\mu_1 \times \mu_2)$. Now, deduce a formula for

$$\frac{d(\nu_1 \times \nu_2)}{d(\mu_1 \times \mu_2)}$$

in terms of the Radon–Nikodym derivatives of ν_i with respect to μ_i , i = 1, 2.