MATH 222 : ANALYSIS II-MEASURE \& INTEGRATION
 SPRING 2020
 HOMEWORK 12

Note: In what follows, if (X, \mathcal{F}, μ) is a measure space, then $\mathbb{L}^{p}(X, \mu)$ - without mention of the underlying field - will denote the \mathbb{L}^{p}-space arising from \mathbb{R}-valued measurable functions.

1. Let (X, \mathcal{F}, μ) be a σ-finite measure space and let ν be a σ-finite signed measure on \mathcal{F}. Show that for any $E \in \mathcal{F}$ such that $\chi_{E} \in \mathbb{L}^{1}(X, \nu)$,

$$
\begin{gathered}
\chi_{E}\left(\frac{d \nu}{d \mu}\right) \in \mathbb{L}^{1}(X, \mu), \text { and } \\
\int_{X} \chi_{E} d \nu=\int_{X} \chi_{E}\left(\frac{d \nu}{d \mu}\right) d \mu
\end{gathered}
$$

2. Let $(V,\|\cdot\|)$ be a complete normed linear space (with respect to the metric induced by $\|\cdot\|$). Show that ($V^{*},\|\cdot\|_{V^{*}}$) is complete.
Remark. A normed linear space that is complete with respect to the distance induced by the norm is called a Banach space.
3. Let (X, \mathcal{F}) be a measurable space and let

$$
M(\mathcal{F}):=\{\nu: \mathcal{F} \longrightarrow \mathbb{R} \mid \nu \text { is a signed measure }\}
$$

In view of the fact that each $\nu \in M(\mathcal{F})$ takes values in \mathbb{R}, we can define

$$
\nu+\rho \quad \text { and } \quad c \nu \quad \forall \nu, \rho \in M(\mathcal{F}) \text { and } \forall c \in \mathbb{R}
$$

in the obvious manner. Define $\|\nu\|:=|\nu|(X)$. Show that $(M(\mathcal{F}),\|\cdot\|)$ is a normed linear space over \mathbb{R}.
Remark. The norm $\|\cdot\|$ on $M(\mathcal{F})$ defined above is called the total-variation norm.
4. Let (X, \mathcal{F}, μ) be a measure space and fix $p: 1 \leq p \leq+\infty$. Let q denote the conjugate exponent. Fix a $g \in \mathbb{L}^{q}(X, \mu)$, write

$$
\lambda([f]):=\int_{X} f g d \mu \quad \forall f \text { belonging to } \mathbb{L}^{p}(X, \mu)
$$

and show that (i) the integral on the right-hand side exists; $(i i)$ the left-hand side is well-defined (i.e., is independent of the choice of the representative of $\left.[f] \in \mathbb{L}^{p}(X, \mu)\right)$ and makes $\lambda: \mathbb{L}^{p}(X, \mu) \longrightarrow$ \mathbb{R} a bounded linear functional; and $(i i i)\|\lambda\|_{\left(\mathbb{L}^{p}\right)^{*}} \leq\|g\|_{q}$.
5. Define $\mathcal{C}_{0}\left(\mathbb{R}^{n} ; \mathbb{F}\right)$, where $\mathbb{F}=\mathbb{R}$ or \mathbb{C}, to be the closure of $\mathcal{C}_{c}\left(\mathbb{R}^{n} ; \mathbb{F}\right)$ with respect to the metric induced by the \mathbb{L}^{∞}-norm. Show that

$$
\mathcal{C}_{0}\left(\mathbb{R}^{n} ; \mathbb{F}\right)=\left\{f: \mathbb{R}^{n} \longrightarrow \mathbb{F} \mid f \text { is continuous, and } \lim _{\|x\| \rightarrow+\infty} f(x)=0\right\}
$$

6. Let $\left(X_{i}, \mathcal{F}_{i}\right)$ be measure spaces and let μ_{i}, ν_{i} be σ-finite (positive) measures on $\mathcal{F}_{i}, i=1,2$. Suppose $\nu_{i} \ll \mu_{i}, i=1,2$. Show that $\left(\nu_{1} \times \nu_{2}\right) \ll\left(\mu_{1} \times \mu_{2}\right)$. Now, deduce a formula for

$$
\frac{d\left(\nu_{1} \times \nu_{2}\right)}{d\left(\mu_{1} \times \mu_{2}\right)}
$$

in terms of the Radon-Nikodym derivatives of ν_{i} with respect to $\mu_{i}, i=1,2$.

