MATH 222 : ANALYSIS II – MEASURE & INTEGRATION SPRING 2020 HOMEWORK 2

Instructor: GAUTAM BHARALI

Assigned: JANUARY 24, 2020

1. Prove the following:

Theorem (Carathéodory). Let X be an infinite set and let μ^* be an outer measure on X. Define

$$M(\mu^*) := \{ E \subset X : \mu^*(A) = \mu^*(A \cap E) + \mu^*(A \setminus E) \text{ for every } A \in \mathscr{P}(X) \},\$$

and set $\mu := \mu^*|_{M(\mu^*)}$. Then $(X, M(\mu^*), \mu)$ is a measure space.

2. Fix a function $F : \mathbb{R} \longrightarrow \mathbb{R}$ that is increasing (not necessarily strictly) and continuous from the **right.** Recall, from Problem 7 of Homework 1, the **outer measure** on \mathbb{R} given by

$$\mu_F^*(A) := \inf \left\{ \sum_j (F(b_j) - F(a_j)) : \{(a_j, b_j] : j \in J\} \text{ is an admissible} \\ \text{cover of } A, a_j, b_j \in \mathbb{R} \text{ and } a_j < b_j \right\},$$

where A is any subset of \mathbb{R} . Let $M(\mu_F^*)$ be the σ -algebra associated to μ_F^* given by the Carathéodory construction above. We can show that $\mu_F^*((a, b]) = F(b) - F(a)$; assuming this if necessary, show that $\mathscr{B}(\mathbb{R}) \subset M(\mu_F^*)$.

3. (Completion of a measure) Let (X, \mathcal{F}, μ) be a measure space. Define the family

$$\mathcal{N}(\mu) := \{ Z \subset X : \exists A \in \mathcal{F} \text{ such that } A \supset Z \text{ and } \mu(A) = 0 \}.$$

(a) Show that

$$\overline{\mathcal{F}} := \{A \cup Z : A \in \mathcal{F}, \ Z \in \mathcal{N}(\mu)\}$$

is a σ -algebra.

- (b) Show that μ has a **unique** extension to a measure $\overline{\mu} : \overline{\mathcal{F}} \longrightarrow [0, +\infty]$.
- (c) Show that $(X, \overline{\mathcal{F}}, \overline{\mu})$ is complete.

Remark. The measure space $(X, \overline{\mathcal{F}}, \overline{\mu})$ is called the *completion of* (X, \mathcal{F}, μ) .

4. (Large Cantor sets) Consider a sequence $\{\alpha_1, \alpha_2, \alpha_3, \dots\} \subset (0, 1)$. Construct a Cantor-like set as follows: Let $K_0 := [0, 1]$. For each $n = 1, 2, 3, \dots$, define:

 $K_n :=$ the set obtained by removing open intervals that form the middle α_n^{th} fraction of each connected component of K_{n-1} .

Define

$$K := \bigcap_{n=1}^{\infty} K_n.$$

- (a) Show that K has empty interior (Note: We know by now how to argue that K is non-empty!)
- (b) Show that K is Lebesgue measurable.
- (c) Show that m(K) > 0 if and only if $\sum_{j=1}^{\infty} \alpha_n < +\infty$.

Hint. You will need a standard observation about infinite products. The tricky part in solving (c) is an argument in classical analysis linking the latter observation with the series $\sum_{j=1}^{\infty} \alpha_n$.

5. Show that, given any Lebesgue-measurable set $E \subsetneq \mathbb{R}$ with m(E) > 0, there exists a non-measurable set $A \subset E$.

- **6.** Fix $n \in \mathbb{Z}_+$. Let $E \subset \mathbb{R}^n$. Using the fact that
 - (*) $E \in \mathcal{M}_n \Rightarrow$ given any $\varepsilon > 0$, there exists an open set $\Omega_{\varepsilon} \subset \mathbb{R}^n$ such that $\Omega_{\varepsilon} \supseteq E$ and $m^*(\Omega_{\varepsilon} \setminus E) < \varepsilon$
- for E such that $m^*(E) < \infty$, show that (*) holds true for the case $m^*(E) = \infty$.

7. Recall that:

- Given a topological space X, a collection of open sets \mathscr{C} is a *basis* for the prescribed topology if for each $x \in X$ and each open set $U \ni x$, there exists an open set $V \in \mathscr{C}$ such that $x \in V \subset U$.
- An open cube in \mathbb{R}^n is a set of the form

$$\prod_{i=1}^{n} (a_i - \varepsilon, a_i + \varepsilon),$$

where $(a_1, \ldots, a_n) \in \mathbb{R}^n$ and $\varepsilon > 0$.

Fix an $n \in \mathbb{Z}_+$, $n \ge 2$.

- (a) Show that \mathbb{R}^n has a countable basis comprising open cubes.
- (b) Assuming that, for any $(a_1, \ldots, a_n) \in \mathbb{R}^n$, the orthants

$$\prod_{i=1}^{n} (-\infty, a_i) \text{ and } \prod_{i=1}^{n} (a_i, +\infty)$$

belong to \mathcal{M}_n , show that the Borel σ -algebra $\mathscr{B}(\mathbb{R}^n) \subset \mathcal{M}_n$.