MATH 222 : ANALYSIS II – MEASURE & INTEGRATION SPRING 2020 HOMEWORK 4

Instructor: GAUTAM BHARALI

Assigned: FEBRUARY 7, 2020

1. Let (X, \mathcal{F}, μ) be a measure space and suppose $E \in \mathcal{F}$ is such that $\mu(E) = 0$. Let $f : X \longrightarrow [-\infty, +\infty]$ be such that $f|_{X \setminus E}$ is measurable. Show that there exists a $g : X \longrightarrow [-\infty, +\infty]$ that is measurable such that $f|_{X \setminus E} = g|_{X \setminus E}$.

2. Let (X, \mathcal{F}, μ) be a measure space and let $A \in \mathcal{F}$. Let $\phi : X \longrightarrow \mathbb{R}$ be a simple non-negative measurable function. Show that

$$\int_A \phi \, d\mu \, = \, \int_X \phi \chi_A \, d\mu.$$

3. Let (X, \mathcal{F}, μ) be a measure space and let $A \in \mathcal{F}$. Let $f : A \longrightarrow [-\infty, +\infty]$ be a measurable function. Does there exist a measurable function $g : X \longrightarrow [-\infty, +\infty]$ such that $g|_A = f$?

4. Equip \mathbb{R} with the Borel σ -algebra. Let x_1, \ldots, x_N be distinct points in \mathbb{R} . Let $a_1, \ldots, a_N > 0$. For any $x \in \mathbb{R}$, define the measure δ_x , known as the **Dirac mass at** x, by

$$\delta_x(E) := \begin{cases} 1, & \text{if } x \in E, \\ 0, & \text{otherwise,} \end{cases}$$

for every $E \in \mathscr{B}(\mathbb{R})$. (We have seen in Homework 1 that δ_x is a measure in this setting.) Define

$$\mu := \sum_{j=1}^N a_j \delta_{x_j}.$$

Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be a Borel-measurable function. Follow the step-by-step construction of the Lebesgue integral to derive a formula for $\int_{\mathbb{R}} f d\mu$.

5. Show that the Monotone Convergence Theorem can be deduced from Fatou's Lemma.

6. Let (X, \mathcal{F}, μ) be a measure space and let $f: X \longrightarrow [0, +\infty]$ be measurable. Show that

$$\int_X f \, d\mu = 0 \iff f = 0 \text{ a.e.}$$

Hint. First consider the case when f is a simple non-negative measurable function.

7. Let (X, \mathcal{F}, μ) be a measure space and let $f : X \longrightarrow [-\infty, +\infty]$ be measurable. show that f is Lebesgue integrable if and only if

$$\int_X |f| \, d\mu \, < \, +\infty.$$

8. (Chebyshev's inequality) Let (X, \mathcal{F}, μ) be a measure space and $A \in \mathcal{F}$. Suppose $f : A \longrightarrow [0, +\infty]$ and that f is integrable. Let $\alpha > 0$. Show that

$$\mu\left[\{f > \alpha\}\right] \leq \alpha^{-1} \int_E f \, d\mu$$