MATH 222: ANALYSIS II-MEASURE \& INTEGRATION
 SPRING 2020
 HOMEWORK 6

Assigned: FEBRUARY 28, 2020

1. Let $\left\{\left(X_{\alpha}, \mathcal{F}_{\alpha}\right)\right\}_{\alpha \in A}$ be an indexed family of measurable spaces. Assume that A is at most countable. Show that:
(i) $\otimes_{\alpha \in A} \mathcal{F}_{\alpha}$ is generated by the collection

$$
\left\{\prod_{\alpha \in A} E_{\alpha}: E_{\alpha} \in \mathcal{F}_{\alpha} \forall \alpha \in A\right\}
$$

(ii) If \mathcal{F}_{α} is generated by $\mathcal{C}_{\alpha} \subset \mathscr{P}\left(X_{\alpha}\right)$, then $\otimes_{\alpha \in A} \mathcal{F}_{\alpha}$ is generated by the collection

$$
\left\{\prod_{\alpha \in A} E_{\alpha}: E_{\alpha} \in \mathcal{C}_{\alpha} \forall \alpha \in A\right\}
$$

In the two problems that follow, we shall use the following notation. Firstly: $m_{N}^{*}, \mathscr{M}_{N}$ and m_{N} will denote, respectively, the Lebesgue outer measure, the Lebesgue σ-algebra, and the Lebesgue measure - as defined in class - on $\mathbb{R}^{N}, N \in \mathbb{Z}_{+}$.

Next: consider the product measure on \mathbb{R}^{N} arising from $\left(\mathbb{R}, \mathscr{M}_{1}, m_{1}\right)$ and let π and π^{*} be the set functions (the latter an outer measure) associated to the product construction. Define, for $A \subset \mathbb{R}^{N}$:

$$
\begin{aligned}
\mathscr{C}_{Q}(A) & :=\text { the collection of covers of } A \text { admissible in the definition of } m_{N}^{*} \\
\mathscr{C}_{b o x}(A) & :=\text { the collection of covers of } A \text { admissible in the definition of } \pi^{*} \\
M\left(\pi^{*}\right) & :=\text { the } \sigma \text {-algebra arising from applying the Carathéory condition to } \pi^{*} .
\end{aligned}
$$

2. Let $A \subset \mathbb{R}^{N}$ and suppose $\pi^{*}(A)<\infty$. Given an $\varepsilon>0$, let $\left\{B_{j}: j \in J\right\} \in \mathscr{C}_{\text {box }}(A)$ be a cover of A such that $\sum_{j \in J} \pi\left(B_{j}\right)<\pi^{*}(A)+\varepsilon$. Show that there is a cover $\left\{Q_{n}: n \in \mathbb{Z}_{+}\right\} \in \mathscr{C}_{Q}(A)$ such that

$$
\sum_{n=1}^{\infty} \operatorname{vol}\left(Q_{n}\right)<\pi^{*}(A)+C \varepsilon
$$

for some constant $C>0$ that does not depend on $\left\{B_{j}: j \in J\right\},\left\{Q_{n}: n \in \mathbb{Z}_{+}\right\}$.
Hint. First reduce the problem to a basic, simply-stated claim about the geometry of open sets in \mathbb{R}^{N}, and prove the above using this claim. Thereafter, try to prove the claim itself.
3. How are \mathscr{M}_{N} and $M\left(\pi^{*}\right)$ related?
4. Let X be a non-empty set and suppose $\mathcal{A} \subseteq \mathscr{P}(X)$ is an algebra. Let $\mathscr{C}(\mathcal{A})$ denote the monotone class generated by \mathcal{A}. Show that $\mathscr{C}(\mathcal{A})=\mathcal{F}(\mathcal{A})$.
5. Let $E \in \mathscr{M}_{1}$ and let $f: E \longrightarrow[0,+\infty)$ be a non-negative Lebesgue-measurable function. Show that the set

$$
S:=\{(x, y) \in E \times \mathbb{R}: 0 \leq y \leq f(x) \forall x \in E\}
$$

belongs to $\mathscr{M}_{1} \otimes \mathscr{M}_{1}$.
6. Let $-\infty<a<b<+\infty$, write $I:=[a, b]$, an interval in \mathbb{R}, and let $\phi: I \longrightarrow \mathbb{R}$ be a continuous, strictly increasing function. Define:

$$
S:=\{(x, y) \in E \times \mathbb{R}: 0 \leq y \leq \phi(x) \forall x \in E\}
$$

Let $f: S \longrightarrow \mathbb{R}$ be in $\mathbb{L}^{1}\left(S,\left.(m \times m)\right|_{S}\right)$. State and prove the intermediate assertions needed to make sense of the following statement:

$$
\begin{aligned}
\int_{S} f d(m \times m) & =\int_{I}\left[\int_{[0, \phi(x)]} f(x, y) d m(y)\right] d m(x) \\
& =\int_{\phi(I)}\left[\int_{\left[\phi^{-1}(y), b\right]} f(x, y) d m(x)\right] d m(y)
\end{aligned}
$$

Then, prove the above statement.
Clarification: Do not attempt a solution beginning with an auxiliary statement involving simple functions! Using the conclusions of problems stated in previous assignments, if necessary, try to reduce the problem to a suitable application of the Tonelli / Fubini Theorem.

