MATH 222 : ANALYSIS II – MEASURE & INTEGRATION SPRING 2020 HOMEWORK 6

Instructor: GAUTAM BHARALI

Assigned: FEBRUARY 28, 2020

1. Let $\{(X_{\alpha}, \mathcal{F}_{\alpha})\}_{\alpha \in A}$ be an indexed family of measurable spaces. Assume that A is at most countable. Show that:

(i) $\otimes_{\alpha \in A} \mathcal{F}_{\alpha}$ is generated by the collection

$$\Big\{\prod_{\alpha\in A} E_{\alpha}: E_{\alpha}\in \mathcal{F}_{\alpha}\;\forall\alpha\in A\Big\}.$$

(*ii*) If \mathcal{F}_{α} is generated by $\mathcal{C}_{\alpha} \subset \mathscr{P}(X_{\alpha})$, then $\otimes_{\alpha \in A} \mathcal{F}_{\alpha}$ is generated by the collection

$$\Big\{\prod_{\alpha\in A} E_{\alpha}: E_{\alpha}\in \mathcal{C}_{\alpha}\;\forall\alpha\in A\Big\}.$$

In the two problems that follow, we shall use the following notation. Firstly: m_N^* , \mathcal{M}_N and m_N will denote, respectively, the Lebesgue outer measure, the Lebesgue σ -algebra, and the Lebesgue measure—as defined in class—on \mathbb{R}^N , $N \in \mathbb{Z}_+$.

Next: consider the product measure on \mathbb{R}^N arising from $(\mathbb{R}, \mathcal{M}_1, m_1)$ and let π and π^* be the set functions (the latter an outer measure) associated to the product construction. Define, for $A \subset \mathbb{R}^N$:

 $\mathscr{C}_Q(A) :=$ the collection of covers of A admissible in the definition of m_N^* , $\mathscr{C}_{box}(A) :=$ the collection of covers of A admissible in the definition of π^* , $M(\pi^*) :=$ the σ -algebra arising from applying the Carathéory condition to π^* .

2. Let $A \subset \mathbb{R}^N$ and suppose $\pi^*(A) < \infty$. Given an $\varepsilon > 0$, let $\{B_j : j \in J\} \in \mathscr{C}_{box}(A)$ be a cover of A such that $\sum_{j \in J} \pi(B_j) < \pi^*(A) + \varepsilon$. Show that there is a cover $\{Q_n : n \in \mathbb{Z}_+\} \in \mathscr{C}_Q(A)$ such that

$$\sum_{n=1}^{\infty} \operatorname{vol}(Q_n) < \pi^*(A) + C\varepsilon$$

for some constant C > 0 that does **not** depend on $\{B_j : j \in J\}, \{Q_n : n \in \mathbb{Z}_+\}.$

Hint. First reduce the problem to a basic, simply-stated claim about the **geometry** of open sets in \mathbb{R}^N , and prove the above using this claim. Thereafter, try to prove the claim itself.

3. How are \mathcal{M}_N and $M(\pi^*)$ related?

4. Let X be a non-empty set and suppose $\mathcal{A} \subseteq \mathscr{P}(X)$ is an algebra. Let $\mathscr{C}(\mathcal{A})$ denote the monotone class generated by \mathcal{A} . Show that $\mathscr{C}(\mathcal{A}) = \mathcal{F}(\mathcal{A})$.

5. Let $E \in \mathcal{M}_1$ and let $f: E \longrightarrow [0, +\infty)$ be a non-negative Lebesgue-measurable function. Show that the set

$$S := \{ (x, y) \in E \times \mathbb{R} : 0 \le y \le f(x) \; \forall x \in E \}$$

belongs to $\mathcal{M}_1 \otimes \mathcal{M}_1$.

6. Let $-\infty < a < b < +\infty$, write I := [a, b], an interval in \mathbb{R} , and let $\phi : I \longrightarrow \mathbb{R}$ be a continuous, strictly increasing function. Define:

$$S := \{ (x, y) \in E \times \mathbb{R} : 0 \le y \le \phi(x) \ \forall x \in E \}.$$

Let $f: S \longrightarrow \mathbb{R}$ be in $\mathbb{L}^1(S, (m \times m)|_S)$. State and prove the intermediate assertions needed to make sense of the following statement:

$$\begin{split} \int_{S} f \, d(m \times m) \, &= \, \int_{I} \left[\int_{[0,\phi(x)]} f(x,y) \, dm(y) \right] dm(x) \\ &= \, \int_{\phi(I)} \left[\int_{[\phi^{-1}(y),b]} f(x,y) \, dm(x) \right] dm(y). \end{split}$$

Then, prove the above statement.

Clarification: Do **not** attempt a solution beginning with an auxiliary statement involving simple functions! Using the conclusions of problems stated in previous assignments, **if** necessary, try to reduce the problem to a suitable application of the Tonelli / Fubini Theorem.