MATH 222 : ANALYSIS II – MEASURE & INTEGRATION SPRING 2020

HOMEWORK 7

Instructor: GAUTAM BHARALI

Assigned: MARCH 7, 2020

1. Let $\{(X_{\alpha}, \mathcal{F}_{\alpha})\}_{\alpha \in A}$ be an indexed family of measurable spaces. Assume that A is at most countable. The statement asked to be proved in **Problem 1-(ii)** in the last assignment is **false**. Establish the following **correction** of the latter statement:

If, for each $\alpha \in A$, \mathcal{F}_{α} is generated by $\mathcal{C}_{\alpha} \subset \mathscr{P}(X_{\alpha})$ with the property that $X_{\alpha} \in \mathcal{C}_{\alpha}$, then $\otimes_{\alpha \in A} \mathcal{F}_{\alpha}$ is generated by the collection

$$\Big\{\prod_{\alpha\in A} E_{\alpha}: E_{\alpha}\in \mathcal{C}_{\alpha}\;\forall\alpha\in A\Big\}.$$

Note: In what follows, if (X, \mathcal{F}, μ) is a measure space, then $\mathbb{L}^{p}(X, \nu)$ — without mention of the underlying field — will denote the \mathbb{L}^{p} -space arising from \mathbb{R} -valued measurable functions.

2. Let (X, \mathcal{F}, μ) be a measure space. A set $E \in \mathcal{F}$ is called an **atom** if $\mu(E) > 0$ and contains no measurable subset of strictly smaller but positive measure. We say that (X, \mathcal{F}, μ) is **non-atomic** if there are no atoms in \mathcal{F} .

Let (X, \mathcal{F}, μ) be a non-atomic and σ -finite measure space (where, to avoid trivialities, we take $\mu(X) > 0$). Show that the conclusion of Minkowski's inequality is false on $\mathbb{L}^{p}(X, \mu)$ for each $p \in (0, 1)$.

3. Show that $\mathbb{L}^{\infty}(\mathbb{R}^n, m)$ is not separable.

4. Let (X, \mathcal{F}, μ) be a measure space with $\mu(X) < \infty$. Let 0 . Show, using Hölder's inequality**appropriately** $(note that it is possible that <math>0), that <math>\mathbb{L}^{r}(X, \mu, \mathbb{F}) \subset \mathbb{L}^{p}(X, \mu, \mathbb{F})$, where $\mathbb{F} = \mathbb{R}$ or \mathbb{C} .

5. Let (X, \mathcal{F}, μ) be a measure space with $\mu(X) < \infty$. Let $0 . Show, without using Hölder's inequality, that <math>\mathbb{L}^{r}(X, \mu, \mathbb{F}) \subset \mathbb{L}^{p}(X, \mu, \mathbb{F})$, where $\mathbb{F} = \mathbb{R}$ or \mathbb{C} .

6. (Minkowski's Integral Inequality) Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be σ -finite measure spaces and let f be a $\mathcal{M} \otimes \mathcal{N}$ -measurable $[0, +\infty)$ -valued function on $X \times Y$. Let $1 \leq p < \infty$. Show that

$$\left[\int_X \left|\int_Y f(x,y) \, d\nu(y)\right|^p d\mu(x)\right]^{1/p} \leq \int_Y \left[\int_X f(x,y)^p d\mu(x)\right]^{1/p} d\nu(y)$$