MATH 222 : ANALYSIS II – MEASURE & INTEGRATION SPRING 2020 HOMEWORK 9

Instructor: GAUTAM BHARALI

1. This problem was originally assigned in Homework 8. But since the mode of convergence termed *almost uniform convergence* had not then been defined, it is being repeated:

Let (X, \mathcal{F}, μ) be a measure space, let $\{f_n\}$ be a sequence of measurable \mathbb{F} -valued functions, $\mathbb{F} = \mathbb{R}$ or \mathbb{C} , and let f be a measurable \mathbb{F} -valued function. Show that if $f_n \longrightarrow f$ almost uniformly, then $f_n \xrightarrow{\mu} f$.

2. Let (X, \mathcal{F}, μ) be a measure space. Let $\{f_n\}$ be a sequence of \mathbb{F} -valued measurable functions, where $\mathbb{F} = \mathbb{R}$ or \mathbb{C} , and let f be a measurable \mathbb{F} -valued function. Show that if $f_n \xrightarrow{\mu} f$, then $\{f_n\}$ is Cauchy in measure.

3. Let $f, g : \mathbb{R}^n \longrightarrow \mathbb{R}$ be two (Lebesgue) measurable functions. Recall the meaning of the expression f * g exists introduced in class. Show that

$$f * g$$
 exists $\iff |f| * |g|(x) < +\infty$ for a.e. $x \in \mathbb{R}^n$.

4. Let $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ be (Lebesgue) measurable. Show that the function

$$\mathbb{R}^n \times \mathbb{R}^n \ni (x,t) \longmapsto f(x-t)$$

is $\mathcal{M}_n \times \mathcal{M}$ -measurable.

5. Let $f \in \mathbb{L}^{\infty}(\mathbb{R}^n)$ and let $g \in \mathbb{L}^p(\mathbb{R}^n)$, where 1 . If f is compactly supported, then show that <math>f * g(x) exists and is finite for every $x \in \mathbb{R}^n$.

6. Let $K : \mathbb{R}^n \longrightarrow \mathbb{R}$ belong to $\mathbb{L}^1(\mathbb{R}^n)$. Let $\|\cdot\|$ denote the Euclidean norm on \mathbb{R}^n . Fix a positive constant δ . Then, show that

$$\lim_{\varepsilon \to 0^+} \int_{\{x: \|x\| > \delta\}} |K_{\varepsilon}| \, dx = 0.$$

7. Show that if $f \in \mathbb{L}^{p}(\mathbb{R}^{n})$ and $g \in \mathbb{L}^{q}(\mathbb{R}^{n})$, where $1 \leq p \leq +\infty$ and p and q are conjugate exponents, then f * g is a **continuous** function on \mathbb{R}^{n} .