MATH 222 : ANALYSIS II-MEASURE \& INTEGRATION
 SPRING 2020
 "THE CORONAVIRUS VACATION" REVIEW ASSIGNMENT \# 1

Instructor: GAUTAM BHARALI

Assigned: APRIL 13, 2020

1. Show that there exists a Borel measurable set $A \subset \mathbb{R}$ such that $0<m(A \cap I)<m(I)$ for every non-empty interval I.
Remark. Problem 4 of Assignment 2 (i.e., on "large Cantor sets") might be helpful.
2. Let (X, \mathcal{F}, μ) be a measure space and let $\left\{A_{n}\right\}$ be a sequence in \mathcal{F}. Suppose the series

$$
\sum_{n=1}^{\infty} \mu\left(A_{n}\right)
$$

converges. Then, show that for μ-a.e. $x \in X, x$ belongs to at most finitely many of the E_{j} 's.
3. Fix an $n \in \mathbb{Z}_{+}$. Let $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ be an invertible linear transformation. You may freely use without proof the fact that for any set $Q \subseteq \mathbb{R}^{n}$ of the form $Q=I_{1} \times \cdots \times I_{n}$, where each I_{i}, $1 \leq i \leq n$, is a non-empty interval,

$$
\operatorname{vol}(T(Q))=m^{*}(T(Q))=m(T(Q))=|\operatorname{det}(T)| \operatorname{vol}(Q) .
$$

Using this fact:
(a) Show that for any $E \in \mathscr{M}_{n}, T(E) \in \mathscr{M}_{n}$ and $m(T(E))=|\operatorname{det}(T)| m(E)$.
(b) Show that if $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ is (Lebesgue) measurable, then so is $f \circ T$.
(c) Use (a) and (b) to show that if ϕ is a simple non-negative measurable function, then

$$
\int_{\mathbb{R}^{n}}(\phi \circ T) d m=|\operatorname{det}(T)|^{-1} \int_{\mathbb{R}^{n}} \phi d m .
$$

(d) Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ be Lebesgue integrable. Then, show that

$$
\int_{\mathbb{R}^{n}}(f \circ T) d m=|\operatorname{det}(T)|^{-1} \int_{\mathbb{R}^{n}} f d m .
$$

4. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a Lebesgue measurable 1-periodic function (i.e., $f(x+1)=f(x)$ for every $x \in \mathbb{R})$. Suppose $\exists C \in(0, \infty)$ such that

$$
\int_{[0,1]}|f(a+x)-f(b+x)| d m(x) \leq C \quad \forall a, b \in \mathbb{R}
$$

Show that $\left.f\right|_{(0,1)}$ is Lebesgue integrable on $(0,1)$.

Note: In what follows, if (X, \mathcal{F}, μ) is a measure space, then $\mathbb{L}^{p}(X, \mu)$ - without mention of the underlying field - will denote the \mathbb{L}^{p}-space arising from \mathbb{R}-valued measurable functions.
5. Consider the measure space $\left([-1,1],\left.\mathscr{M}_{1}\right|_{[-1,1]},\left.m\right|_{[-1,1]}\right)$. Let $\left\{f_{n}\right\}$ be a sequence in $\mathbb{L}^{2}([-1,1], m)$ and let $f_{n}:[-1,1] \longrightarrow[0, \infty)$ for each $n \in \mathbb{Z}_{+}$. Assume that $\left\|f_{n}\right\|_{1}=2$ and

$$
\left|\left\|f_{n}\right\|_{2}-\sqrt{2}\right| \leq 2^{-n}
$$

for each $n \in \mathbb{Z}_{+}$. Show that $\left\{f_{n}\right\}$ converges a.e.; what is this limit function?
6. For $n \in \mathbb{Z}_{+}$, let V_{n} denote the volume of the closed unit ball in \mathbb{R}^{n} with centre 0 . Show, by the use of either the Fubini or the Tonelli theorem, that

$$
V_{n}=2 V_{n-1} \int_{[0,1]}\left(1-x^{2}\right)^{(n-1) / 2} d m(x) \quad \text { for } n=2,3,4, \ldots
$$

Please be sure to provide complete justifications!
7. Consider the measure space $\left([0,2 \pi],\left.\mathscr{M}_{1}\right|_{[0,2 \pi]},\left.m\right|_{[0,2 \pi]}\right)$ and fix a function f in $\mathbb{L}^{2}([0,2 \pi], m)$. Does either of the sequences

$$
\begin{aligned}
& \left\{\int_{[0,2 \pi]} f(x) \cos (n x) d m(x)\right\} \\
& \left\{\int_{[0,2 \pi]} f(x) \sin (n x) d m(x)\right\}
\end{aligned}
$$

converge? If so, then determine the limit - giving complete justifications.

