MATH 222 : ANALYSIS II-MEASURE \& INTEGRATION SPRING 2020
 "THE CORONAVIRUS VACATION" REVIEW ASSIGNMENT \# 2

Instructor: GAUTAM BHARALI

Assigned: APRIL 20, 2020

Note: In what follows, if (X, \mathcal{F}, μ) is a measure space, then $\mathbb{L}^{p}(X, \mu)$ - without mention of the underlying field - will denote the \mathbb{L}^{p}-space arising from \mathbb{R}-valued measurable functions.

1. Let $a<b \in[-\infty,+\infty]$ and let $g:(a, b) \longrightarrow \mathbb{R}$ be a convex function: which means that

$$
g((1-t) x+t y) \leq(1-t) g(x)+t g(y) \quad \forall x, y \in(a, b) \text { and } \forall t \in[0,1] .
$$

(a) Show that g is (Lebesgue) measurable.
(b) Let (X, \mathcal{F}, μ) be a measure space, and suppose $\mu(X)=1$. Let $f: X \longrightarrow(a, b)$ belong to $\mathbb{L}^{1}(X, \mu)$. Show that $g \circ f$ is Lebesgue integrable in the extended sense and that

$$
g\left(\int_{X} f d \mu\right) \leq \int_{X}(g \circ f) d \mu
$$

Hint. What property of g, if demonstrated, would simultaneously establish both (a) and the fact that the integrand on the right-hand side above is measurable?
2. Consider the following:

Theorem. Let (X, \mathscr{M}, μ) and (Y, \mathscr{N}, ν) be σ-finite. If $E \in \mathscr{M} \otimes \mathscr{N}$, then the functions

$$
X \ni x \longmapsto \nu\left(E_{x}\right) \quad \text { and } \quad Y \ni y \longmapsto \mu\left(E^{y}\right)
$$

are measurable and

$$
(\mu \times \nu)(E)=\int_{X} \nu\left(E_{x}\right) d \mu(x)=\int_{Y} \mu\left(E^{y}\right) d \nu(y) .
$$

In class, we: (i) rigorously proved the above theorem under the assumption that μ and ν are finite, and (ii) discussed how to use the hypothesis of σ-finiteness. Using the outcomes of (i) and (ii), complete the proof of the above theorem when $\mu(X)=\nu(Y)=\infty$.
3. Let (X, \mathcal{F}, μ) be a measure space, and suppose $f_{1}, \ldots, f_{N}: X \longrightarrow \mathbb{F}$ are measurable functions, where \mathbb{F} is either \mathbb{R} or \mathbb{C}. Let $p_{1}, \ldots, p_{N} \in[1,+\infty)$ such that $\left(1 / p_{1}\right)+\cdots+\left(1 / p_{N}\right)=1$. Show that

$$
\left\|f_{1} \ldots f_{N}\right\|_{1} \leq \prod_{j=1}^{N}\left\|f_{j}\right\|_{p_{j}}
$$

Note. We exclude $p_{j}=+\infty$ above merely so that one can give a cleaner argument. The inequality above would continue to hold if some of the p_{j} 's above were equal to $+\infty$.
4. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a (Lebesgue) measurable function and suppose f is Lebesgue integrable on $(-1,1)$. Let $Y \nsubseteq \mathbb{R}$ be a closed subset. Assume that the averages of f on E,

$$
\langle f\rangle_{E}:=\frac{1}{m(E)} \int_{E} f d m
$$

lie in Y for every $\left.E \in \mathscr{M}\right|_{(-1,1)}$ for which $m(E)>0$. Deduce that $f(x) \in Y$ for a.e. $x \in(-1,1)$. Note. This was one of the relatively easy (!) problems in the mid-semester exam that nearly everyone ignored. To solve this problem, please do not think complicatedly!
5. Let (X, \mathcal{F}, μ) be a measure space. Let $\left\{f_{n}\right\}$ be a sequence of $[0,+\infty)$-valued measurable functions on X. Suppose $f: X \longrightarrow[0,+\infty)$ is a measurable function such that $f_{n} \xrightarrow{\mu} f$. Then, show that

$$
\liminf _{n \rightarrow \infty} \int_{X} f_{n} d \mu \geq \int_{X} f d \mu .
$$

