MATH 222 : ANALYSIS II – MEASURE & INTEGRATION SPRING 2023 HOMEWORK 10

Instructor: GAUTAM BHARALI

Assigned: MARCH 28, 2023

1. Let (X, \mathcal{F}) be a measurable space and let ν be a complex measure on it. Show that $\operatorname{Re}(\nu)$ and $\operatorname{Im}(\nu)$ are signed measures.

2. Let (X, \mathcal{F}, μ) be a measure space and let $\nu : \mathcal{F} \to [-\infty, +\infty]$ be a signed measure. Show that if $\nu \ll \mu$ as well as $\nu \perp \mu$, then ν is the identically-zero measure.

3. Let (X, \mathcal{F}) be a measurable space and let ν be a signed measure on it. Let (ν^+, ν^-) be a pair of measures such that

$$\nu = \nu^{+} - \nu^{-}$$
 and $\nu^{+} \perp \nu^{-}$. (1)

Let $(\tilde{\nu}^+, \tilde{\nu}^-)$ be a pair of measures satisfying (1) (with $\tilde{\nu}^{\pm}$ replacing ν^{\pm}). Let $A, B \in \mathcal{F}$ be such that $A \cap B = \emptyset$, $X = A \cup B$, A is a null set for $\tilde{\nu}^+$ and B is a null set for $\tilde{\nu}^-$. Show that $X = A \sqcup B$ is a Hahn decomposition of X and, thereby, show that $\tilde{\nu}^+ = \nu^+$ and $\tilde{\nu}^- = \nu^-$.

4. Let $F : \mathbb{R} \to \mathbb{R}$ be a function of bounded variation. Show that $F(-\infty) := \lim_{x \to -\infty} F(x)$ exists.

5. Let $F : \mathbb{R} \to \mathbb{R}$ be a bounded monotone function. Show that F is of bounded variation and give a formula for its total variation V(F).

6. Let $F : \mathbb{R} \longrightarrow \mathbb{R}$ be a periodic function—i.e., $\exists T \in (0, +\infty)$ such that $F(x+T) = F(x) \ \forall x \in \mathbb{R}$. When is F of bounded variation?

Note. This problem shows that being of bounded variation is quite a restrictive condition. While the class BV contains many functions that are not even continuous (e.g., see the previous problem), plenty of **very well-behaved** functions fail to be of bounded variation.

- 7. Let $F : \mathbb{R} \to \mathbb{R}$.
 - (a) Let $a < b \in \mathbb{R}$. Show that

$$V_F(b) - V_F(a) = \sup \left\{ \sum_{j=1}^N |F(x_j) - F(x_{j-1})| : N \in \mathbb{Z}_+, \ a = x_0 < x_1 < \dots < x_N = b \right\}.$$

(b) Since the right-hand side of the above identity depends only on the values F takes on [a, b]:

- We call $(V_F(b) V_F(a))$ the total variation of F on [a, b], which we denote by V(F; [a, b]).
- We say that a function $f:[a,b] \to \mathbb{R}$ is of bounded variation, denoted $f \in BV[a,b]$, if and only if $V(f;[a,b]) < \infty$.

Now define

$$F(x) := \begin{cases} x \sin(1/x), & \text{if } x \in \mathbb{R} \setminus \{0\}, \\ 0, & \text{if } x = 0. \end{cases}$$

Does $F|_{[0,b]}$ belong to BV[0,b]? Please **justify** your answer.

8. Let (X, \mathcal{F}) be a measurable space and let ν be a signed measure on it. Let ν_{ν}^{\pm} be the (positive) measures associated to ν given by its Jordan decomposition. Consider the positive measure

$$|\nu| := \nu^+ - \nu^-.$$

Let $f : \mathcal{F} \to \mathbb{R}$ be a measurable function. Show that $f \in \mathbb{L}^1(\nu)$ if and only if $f \in \mathbb{L}^1(|\nu|)$.

9. Let (X, \mathcal{F}) be a measurable space and let ρ and τ be **finite** measures on it. Show that either $\rho \perp \tau$ or there exists a $\delta > 0$ and a set $A \in \mathcal{F}$ such that $\tau(A) > 0$ and

$$\rho(E) \ge \delta \tau(E) \quad \forall E \subseteq A : E \in \mathcal{F}.$$

10. Let (X, \mathcal{F}, μ) be a measure space. Assuming (without proof) that the statement of the Lebesgue Decomposition Theorem is true under the additional assumption that ν — as appearing in the the statement of that theorem — is a (positive) measure, prove the general statement of the Lebesgue Decomposition Theorem.