MATH 222 : ANALYSIS II – MEASURE & INTEGRATION SPRING 2023 HOMEWORK 11

Instructor: GAUTAM BHARALI

Assigned: APRIL 4, 2023

Note: In what follows, if (X, \mathcal{F}, μ) is a measure space, then $\mathbb{L}^{p}(\mu)$ —without mention of the underlying field—will denote the \mathbb{L}^{p} -space arising from \mathbb{R} -valued measurable functions. An analogous explanation applies to $\mathbb{L}^{1}(\nu)$ for signed measures ν on \mathcal{F} .

1. Let (X, \mathcal{F}, μ) be a σ -finite measure space and let $\nu : \mathcal{F} \to [-\infty, +\infty]$ be a σ -finite signed measure on \mathcal{F} such that $\nu \ll \mu$. One of the reasons for the notation $(d\nu/d\mu)$ for the measurable function $f: X \to [-\infty, +\infty]$ such that $d\nu = f d\mu$ is the following identity

$$\int_{X} g \, d\nu = \int_{X} g\left(\frac{d\nu}{d\mu}\right) \, d\mu \tag{1}$$

for every $g \in \mathbb{L}^{1}(\nu)$, which is reminiscent of the change-of-variable formula of calculus in the Leibnizian notation. Prove (1) for $g = \chi_{E}$, where $E \in \mathcal{F}$ such that $\chi_{E} \in \mathbb{L}^{1}(X, \nu)$.

Remark. The above conclusion suffices — thanks to the definition and linearity of the Lebesgue integral — to establish (1) in general.

2. Let (X, \mathcal{F}) be a measurable space and let

 $M(\mathcal{F}) := \{ \nu : \mathcal{F} \to \mathbb{R} \mid \nu \text{ is a signed measure and } \|\nu\| < \infty \},\$

where we define $\|\nu\| := |\nu|(X)$. Show that $\|\cdot\|$ is a norm on $M(\mathcal{F})$.

3. Define $\mathcal{C}_0(\mathbb{R}^n; \mathbb{F})$, where $\mathbb{F} = \mathbb{R}$ or \mathbb{C} , to be the closure of $\mathcal{C}_c(\mathbb{R}^n; \mathbb{F})$ with respect to the metric induced by the \mathbb{L}^{∞} -norm. Show that

$$\mathcal{C}_0(\mathbb{R}^n;\mathbb{F}) = \left\{ f: \mathbb{R}^n \to \mathbb{F} \mid f \text{ is continuous and } \lim_{\|x\| \to +\infty} f(x) = 0 \right\}$$

Review problems. The following problems are drawn from across the syllabus of MA222.

4. Let $f : \mathbb{R} \to \mathbb{R}$ be a Lebesgue measurable 1-periodic function (i.e., f(x+1) = f(x) for every $x \in \mathbb{R}$). Suppose $\exists C \in (0, \infty)$ such that

$$\int_{[0,1]} |f(a+x) - f(b+x)| \, dm(x) \leq C \quad \forall a, b \in \mathbb{R}.$$

Show that $f|_{(0,1)}$ is Lebesgue integrable on (0,1).

5. Consider the measure space $([0, 2\pi], \mathcal{M}_1|_{[0,2\pi]}, m|_{[0,2\pi]})$ and fix a function f in $\mathbb{L}^2(m|_{[0,2\pi]})$. Does either of the sequences

$$\left\{ \int_{[0,2\pi]} f(x) \cos(nx) \, dm \right\},\\ \left\{ \int_{[0,2\pi]} f(x) \sin(nx) \, dm \right\}$$

converge? If so, then determine the limit — giving complete justifications.

6. Let (X, \mathcal{F}, μ) be a measure space. Let $\{f_n\}$ be a sequence of $[0, +\infty)$ -valued measurable functions on X. Suppose $f: X \to [0, +\infty)$ is a measurable function such that $f_n \xrightarrow{\mu} f$. Then, show that

$$\liminf_{n \to \infty} \int_X f_n \, d\mu \, \ge \, \int_X f \, d\mu$$

7. Let (X, \mathcal{F}, μ) be a measure space and let $\{A_n\}$ be a sequence in \mathcal{F} . Suppose the series

$$\sum_{n=1}^{\infty} \mu(A_n)$$

converges. Then, show that for μ -a.e. $x \in X$, x belongs to at most finitely many of the E_i 's.

8. Let (X, \mathcal{F}, μ) be a measure space, and suppose $f_1, \ldots, f_N : X \to \mathbb{F}$ are measurable functions, where \mathbb{F} is either \mathbb{R} or \mathbb{C} . Let $p_1, \ldots, p_N \in [1, +\infty)$ such that $(1/p_1) + \cdots + (1/p_N) = 1$. Show that

$$||f_1 \dots f_N||_1 \leq \prod_{j=1}^N ||f_j||_{p_j}.$$

Note. We exclude $p_j = +\infty$ above merely so that one can give a cleaner argument. The inequality above would continue to hold if some of the p_j 's above were equal to $+\infty$.

9. Let $a < b \in [-\infty, +\infty]$ and let $g: (a, b) \to \mathbb{R}$ be a convex function: which means that

$$g((1-t)x + ty) \le (1-t)g(x) + tg(y) \quad \forall x, y \in (a, b) \text{ and } \forall t \in [0, 1].$$

- (a) Show that g is (Lebesgue) measurable.
- (b) Let (X, \mathcal{F}, μ) be a measure space, and suppose $\mu(X) = 1$. Let $f : X \to (a, b)$ belong to $\mathbb{L}^{1}(\mu)$. Show that $g \circ f$ is Lebesgue integrable in the extended sense and that

$$g\left(\int_X f \, d\mu\right) \leq \int_X (g \circ f) \, d\mu.$$

Hint. What property of g, once demonstrated, would **simultaneously** establish both (a) and the fact that the integrand on the right-hand side above is measurable?

10. Fix $n \in \mathbb{Z}_+ \setminus \{1\}$. Let $T \in GL(n, \mathbb{R})$. Let $E \in \mathcal{M}_n$ and let $f : E \to \mathbb{R}$ be measurable with respect to $\mathcal{M}_n|_E$.

- (a) Argue, using the change-of-variable formula on \mathbb{R}^n , that $T^{-1}(E) \in \mathscr{M}_n$.
- (b) Show that $f \circ T : T^{-1}(E) \to \mathbb{R}$ is measurable with respect to $\mathcal{M}_n|_{T^{-1}(E)}$.
- (c) If $f \in \mathbb{L}^1(m|_E)$, then, appealing the change-of-variable formula on \mathbb{R}^n , show that $f \circ T \in \mathbb{L}^1(m|_{T^{-1}(E)})$ and that

$$\int_E f \, dm = |\det(T)| \int_{T^{-1}(E)} f \circ T \, dm$$