MATH 222 : ANALYSIS II - MEASURE \& INTEGRATION
 SPRING 2023
 HOMEWORK 11

Note: In what follows, if (X, \mathcal{F}, μ) is a measure space, then $\mathbb{L}^{p}(\mu)$ - without mention of the underlying field - will denote the \mathbb{L}^{p}-space arising from \mathbb{R}-valued measurable functions. An analogous explanation applies to $\mathbb{L}^{1}(\nu)$ for signed measures ν on \mathcal{F}.

1. Let (X, \mathcal{F}, μ) be a σ-finite measure space and let $\nu: \mathcal{F} \rightarrow[-\infty,+\infty]$ be a σ-finite signed measure on \mathcal{F} such that $\nu \ll \mu$. One of the reasons for the notation $(d \nu / d \mu)$ for the measurable function $f: X \rightarrow[-\infty,+\infty]$ such that $d \nu=f d \mu$ is the following identity

$$
\begin{equation*}
\int_{X} g d \nu=\int_{X} g\left(\frac{d \nu}{d \mu}\right) d \mu \tag{1}
\end{equation*}
$$

for every $g \in \mathbb{L}^{1}(\nu)$, which is reminiscent of the change-of-variable formula of calculus in the Leibnizian notation. Prove (1) for $g=\chi_{E}$, where $E \in \mathcal{F}$ such that $\chi_{E} \in \mathbb{L}^{1}(X, \nu)$.
Remark. The above conclusion suffices - thanks to the definition and linearity of the Lebesgue integral - to establish (1) in general.
2. Let (X, \mathcal{F}) be a measurable space and let

$$
M(\mathcal{F}):=\{\nu: \mathcal{F} \rightarrow \mathbb{R} \mid \nu \text { is a signed measure and }\|\nu\|<\infty\}
$$

where we define $\|\nu\|:=|\nu|(X)$. Show that $\|\cdot\|$ is a norm on $M(\mathcal{F})$.
3. Define $\mathcal{C}_{0}\left(\mathbb{R}^{n} ; \mathbb{F}\right)$, where $\mathbb{F}=\mathbb{R}$ or \mathbb{C}, to be the closure of $\mathcal{C}_{c}\left(\mathbb{R}^{n} ; \mathbb{F}\right)$ with respect to the metric induced by the \mathbb{L}^{∞}-norm. Show that

$$
\mathcal{C}_{0}\left(\mathbb{R}^{n} ; \mathbb{F}\right)=\left\{f: \mathbb{R}^{n} \rightarrow \mathbb{F} \mid f \text { is continuous and } \lim _{\|x\| \rightarrow+\infty} f(x)=0\right\}
$$

Review problems. The following problems are drawn from across the syllabus of MA222.
4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a Lebesgue measurable 1-periodic function (i.e., $f(x+1)=f(x)$ for every $x \in \mathbb{R})$. Suppose $\exists C \in(0, \infty)$ such that

$$
\int_{[0,1]}|f(a+x)-f(b+x)| d m(x) \leq C \quad \forall a, b \in \mathbb{R}
$$

Show that $\left.f\right|_{(0,1)}$ is Lebesgue integrable on $(0,1)$.
5. Consider the measure space $\left([0,2 \pi],\left.\mathscr{M}_{1}\right|_{[0,2 \pi]},\left.m\right|_{[0,2 \pi]}\right)$ and fix a function f in $\mathbb{L}^{2}\left(\left.m\right|_{[0,2 \pi]}\right)$. Does either of the sequences

$$
\begin{aligned}
& \left\{\int_{[0,2 \pi]} f(x) \cos (n x) d m\right\} \\
& \left\{\int_{[0,2 \pi]} f(x) \sin (n x) d m\right\}
\end{aligned}
$$

converge? If so, then determine the limit - giving complete justifications.
6. Let (X, \mathcal{F}, μ) be a measure space. Let $\left\{f_{n}\right\}$ be a sequence of $[0,+\infty)$-valued measurable functions on X. Suppose $f: X \rightarrow[0,+\infty)$ is a measurable function such that $f_{n} \xrightarrow{\mu} f$. Then, show that

$$
\liminf _{n \rightarrow \infty} \int_{X} f_{n} d \mu \geq \int_{X} f d \mu
$$

7. Let (X, \mathcal{F}, μ) be a measure space and let $\left\{A_{n}\right\}$ be a sequence in \mathcal{F}. Suppose the series

$$
\sum_{n=1}^{\infty} \mu\left(A_{n}\right)
$$

converges. Then, show that for μ-a.e. $x \in X, x$ belongs to at most finitely many of the E_{j} 's.
8. Let (X, \mathcal{F}, μ) be a measure space, and suppose $f_{1}, \ldots, f_{N}: X \rightarrow \mathbb{F}$ are measurable functions, where \mathbb{F} is either \mathbb{R} or \mathbb{C}. Let $p_{1}, \ldots, p_{N} \in[1,+\infty)$ such that $\left(1 / p_{1}\right)+\cdots+\left(1 / p_{N}\right)=1$. Show that

$$
\left\|f_{1} \ldots f_{N}\right\|_{1} \leq \prod_{j=1}^{N}\left\|f_{j}\right\|_{p_{j}}
$$

Note. We exclude $p_{j}=+\infty$ above merely so that one can give a cleaner argument. The inequality above would continue to hold if some of the p_{j} 's above were equal to $+\infty$.
9. Let $a<b \in[-\infty,+\infty]$ and let $g:(a, b) \rightarrow \mathbb{R}$ be a convex function: which means that

$$
g((1-t) x+t y) \leq(1-t) g(x)+t g(y) \quad \forall x, y \in(a, b) \text { and } \forall t \in[0,1] .
$$

(a) Show that g is (Lebesgue) measurable.
(b) Let (X, \mathcal{F}, μ) be a measure space, and suppose $\mu(X)=1$. Let $f: X \rightarrow(a, b)$ belong to $\mathbb{L}^{1}(\mu)$. Show that $g \circ f$ is Lebesgue integrable in the extended sense and that

$$
g\left(\int_{X} f d \mu\right) \leq \int_{X}(g \circ f) d \mu
$$

Hint. What property of g, once demonstrated, would simultaneously establish both (a) and the fact that the integrand on the right-hand side above is measurable?
10. Fix $n \in \mathbb{Z}_{+} \backslash\{1\}$. Let $T \in G L(n, \mathbb{R})$. Let $E \in \mathscr{M}_{n}$ and let $f: E \rightarrow \mathbb{R}$ be measurable with respect to $\left.\mathscr{M}_{n}\right|_{E}$.
(a) Argue, using the change-of-variable formula on \mathbb{R}^{n}, that $T^{-1}(E) \in \mathscr{M}_{n}$.
(b) Show that $f \circ T: T^{-1}(E) \rightarrow \mathbb{R}$ is measurable with respect to $\left.\mathscr{M}_{n}\right|_{T^{-1}(E)}$.
(c) If $f \in \mathbb{L}^{1}\left(\left.m\right|_{E}\right)$, then, appealing the change-of-variable formula on \mathbb{R}^{n}, show that $f \circ T \in$ $\mathbb{L}^{1}\left(\left.m\right|_{T^{-1}(E)}\right)$ and that

$$
\int_{E} f d m=|\operatorname{det}(T)| \int_{T^{-1}(E)} f \circ T d m
$$

