MATH 222: ANALYSIS II-MEASURE \& INTEGRATION SPRING 2023
 HOMEWORK 1

1. Let X be an uncountable set and define

$$
\mathcal{F}:=\{A \in \mathscr{P}(X): \text { either } A \text { or } X \backslash A \text { is at most countable }\}
$$

Show that \mathcal{F} is a σ-algebra.
2. Let (X, \mathcal{F}) be a measurable space and let $\mu: \mathcal{F} \longrightarrow[0,+\infty]$. Consider the following properties: $(\mathrm{m} 0) \mu(\varnothing)=0$;
(m1) For any $A_{1}, \ldots, A_{N} \in \mathcal{F}$ that are pairwise disjoint $\mu\left(\cup_{1 \leq j \leq N} A_{j}\right)=\sum_{1 \leq j \leq N} \mu\left(A_{j}\right)$;
(m2) For any increasing sequence of sets $\left\{A_{n}\right\} \subset \mathcal{F}, \mu\left(\cup_{n=1}^{\infty} A_{n}\right)=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)$;
and a related property:
(M1) For any sequence of pairwise disjoint sets $\left\{A_{n}\right\} \subset \mathcal{F}, \mu\left(\cup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} \mu\left(A_{n}\right)$.
Show that μ has the properties (m0), (m1) and (m2) if and only if it has the properties (m0) and (M1).
3. Let (X, \mathcal{F}, μ) be a measure space and let $\left\{A_{n}\right\} \subset \mathcal{F}$ be a decreasing sequence of sets. Assume that $\mu\left(A_{1}\right)<\infty$. Show that $\mu\left(\cap_{n=1}^{\infty} A_{n}\right)=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)$.

Give an example (consider $X=\mathbb{R}$) showing that the above conclusion is false if we drop the assumption that $\mu\left(A_{1}\right)<\infty$.
4. (Restriction of a measure) Let (X, \mathcal{F}, μ) be a measure space and let $E \in \mathcal{F}$. Define $\left.\mathcal{F}\right|_{E}:=\{E \cap A: A \in \mathcal{F}\}$ and let $\left.\mu\right|_{E}$ denote the restriction of μ to $\left.\mathcal{F}\right|_{E}$. Show that $\left(E,\left.\mathcal{F}\right|_{E},\left.\mu\right|_{E}\right)$ is a measure space.
5. Let $x_{0} \in \mathbb{R}^{n}$ and let $\mathscr{B}\left(\mathbb{R}^{n}\right)$ denote the Borel σ-algebra on \mathbb{R}^{n}. Define $\mu: \mathscr{B}\left(\mathbb{R}^{n}\right) \rightarrow\{0,1\}$ by

$$
\mu(A):= \begin{cases}1, & \text { if } x_{0} \in A \\ 0, & \text { otherwise }\end{cases}
$$

Show that μ is a measure.
Remark. The above makes sense for any topological space X with the Borel σ-algebra on X replacing $\mathscr{B}\left(\mathbb{R}^{n}\right)$. The measure μ is called the Dirac mass at x_{0}.
6. Show that the Lebesgue outer measure m^{*} is translation invariant: i.e., that, fixing $n \in \mathbb{Z}_{+}$,

$$
m^{*}(A)=m^{*}(x+A) \text { for any } x \in \mathbb{R}^{n} \text { and any } A \in \mathscr{P}\left(\mathbb{R}^{n}\right)
$$

7. Fix a function $F: \mathbb{R} \rightarrow \mathbb{R}$ that is increasing (not necessarily strictly) and continuous from the right. For any $A \subseteq \mathbb{R}$, define

$$
\mu_{F}^{*}(A):=\inf \left\{\sum_{j \in J}\left(F\left(b_{j}\right)-F\left(a_{j}\right)\right):\left\{\left(a_{j}, b_{j}\right]: j \in J\right\} \text { is an admissible cover of } A\right\} .
$$

Show that μ_{F}^{*} is an outer measure.
8. Fix $n \in \mathbb{Z}_{+}$. Let $\left\{E_{j}: 1 \leq j \leq N\right\}$ be a finite, pairwise disjoint collection of sets, where $E_{1}, \ldots, E_{N} \in \mathscr{M}_{n}$. Show that

$$
m^{*}\left(\cup_{j=1}^{N}\left(A \cap E_{j}\right)\right)=\sum_{j=1}^{N} m^{*}\left(A \cap E_{j}\right) \quad \forall A \in \mathscr{P}\left(\mathbb{R}^{n}\right)
$$

