MATH 222 : ANALYSIS II – MEASURE & INTEGRATION SPRING 2023 HOMEWORK 1

Instructor: GAUTAM BHARALI

Assigned: JANUARY 18, 2023

1. Let X be an uncountable set and define

 $\mathcal{F} := \{ A \in \mathscr{P}(X) : \text{either } A \text{ or } X \setminus A \text{ is at most countable} \}.$

Show that \mathcal{F} is a σ -algebra.

2. Let (X, \mathcal{F}) be a measurable space and let $\mu : \mathcal{F} \longrightarrow [0, +\infty]$. Consider the following properties: (m0) $\mu(\emptyset) = 0$;

(m1) For any $A_1, \ldots, A_N \in \mathcal{F}$ that are pairwise disjoint $\mu (\bigcup_{1 \le j \le N} A_j) = \sum_{1 \le j \le N} \mu(A_j);$

(m2) For any increasing sequence of sets $\{A_n\} \subset \mathcal{F}, \ \mu(\bigcup_{n=1}^{\infty} A_n) = \lim_{n \to \infty} \mu(A_n);$

and a related property:

(M1) For any sequence of pairwise disjoint sets $\{A_n\} \subset \mathcal{F}, \ \mu(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \mu(A_n).$

Show that μ has the properties (m0), (m1) and (m2) if and only if it has the properties (m0) and (M1).

3. Let (X, \mathcal{F}, μ) be a measure space and let $\{A_n\} \subset \mathcal{F}$ be a decreasing sequence of sets. Assume that $\mu(A_1) < \infty$. Show that $\mu(\bigcap_{n=1}^{\infty} A_n) = \lim_{n \to \infty} \mu(A_n)$.

Give an example (consider $X = \mathbb{R}$) showing that the above conclusion is false if we drop the assumption that $\mu(A_1) < \infty$.

4. (Restriction of a measure) Let (X, \mathcal{F}, μ) be a measure space and let $E \in \mathcal{F}$. Define $\mathcal{F}|_E := \{E \cap A : A \in \mathcal{F}\}$ and let $\mu|_E$ denote the restriction of μ to $\mathcal{F}|_E$. Show that $(E, \mathcal{F}|_E, \mu|_E)$ is a measure space.

5. Let $x_0 \in \mathbb{R}^n$ and let $\mathscr{B}(\mathbb{R}^n)$ denote the Borel σ -algebra on \mathbb{R}^n . Define $\mu : \mathscr{B}(\mathbb{R}^n) \to \{0,1\}$ by

$$\mu(A) := \begin{cases} 1, & \text{if } x_0 \in A, \\ 0, & \text{otherwise.} \end{cases}$$

Show that μ is a measure.

Remark. The above makes sense for any topological space X with the Borel σ -algebra on X replacing $\mathscr{B}(\mathbb{R}^n)$. The measure μ is called the *Dirac mass at* x_0 .

6. Show that the Lebesgue outer measure m^* is translation invariant: i.e., that, fixing $n \in \mathbb{Z}_+$,

 $m^*(A) = m^*(x+A)$ for any $x \in \mathbb{R}^n$ and any $A \in \mathscr{P}(\mathbb{R}^n)$.

7. Fix a function $F : \mathbb{R} \to \mathbb{R}$ that is increasing (not necessarily strictly) and continuous from the **right.** For any $A \subseteq \mathbb{R}$, define

$$\mu_F^*(A) := \inf \Big\{ \sum_{j \in J} (F(b_j) - F(a_j)) : \{(a_j, b_j] : j \in J\} \text{ is an admissible cover of } A \Big\}.$$

Show that μ_F^* is an outer measure.

8. Fix $n \in \mathbb{Z}_+$. Let $\{E_j : 1 \leq j \leq N\}$ be a finite, pairwise disjoint collection of sets, where $E_1, \ldots, E_N \in \mathcal{M}_n$. Show that

$$m^* \Big(\cup_{j=1}^N (A \cap E_j) \Big) = \sum_{j=1}^N m^* (A \cap E_j) \quad \forall A \in \mathscr{P}(\mathbb{R}^n).$$