MATH 222 : ANALYSIS II – MEASURE & INTEGRATION SPRING 2023 HOMEWORK 2

Instructor: GAUTAM BHARALI

Assigned: JANUARY 24, 2023

1. Let (X, \mathcal{F}, μ) be a measure space. Consider the collection of sets

 $\mathcal{N} := \{ Z \subset X : \exists A \in \mathcal{F} \text{ such that } A \supset Z \text{ and } \mu(A) = 0 \}.$

We define the **completion** of (X, \mathcal{F}, μ) — denoted by $(X, \overline{\mathcal{F}}, \overline{\mu})$ — as follows:

• Define the collection of sets $\overline{\mathcal{F}}$ as:

$$\overline{\mathcal{F}} := \{ B \cup Z : B \in \mathcal{F}, \ Z \in \mathcal{N} \}.$$

• Define $\overline{\mu}(B \cup Z) := \mu(B)$, where B and Z are as in the above definition.

Show that $\overline{\mathcal{F}}$ is the σ -algebra generated by $\mathcal{F} \cup \mathcal{N}$. Secondly, show that the function $\overline{\mu}$ on $\overline{\mathcal{F}}$ is a measure.

Remark. $(X, \overline{\mathcal{F}}, \overline{\mu})$ is called the completion because it is, clearly, a complete measure space.

2. Show — by using aspects of the argument that shows that m^* is not countably additive — that there exists a subset of \mathbb{R} that is not Lebesgue measurable (i.e., is not in \mathcal{M}_1).

3. Show that, given any Lebesgue-measurable set $E \subsetneq \mathbb{R}$ with m(E) > 0, there exists a set $A \subset E$ that is not Lebesgue measurable.

4. Fix $n \in \mathbb{Z}_+$. Let $E \subset \mathbb{R}^n$. Using the fact that

(*) $E \in \mathcal{M}_n \Rightarrow$ given any $\varepsilon > 0$, there exists an open set $\Omega_{\varepsilon} \subset \mathbb{R}^n$ such that $\Omega_{\varepsilon} \supset E$ and $m^*(\Omega_{\varepsilon} \setminus E) < \varepsilon$

for any E such that $m^*(E) < \infty$, show that (*) also holds true when $m^*(E) = \infty$.

5. Fix $n \in \mathbb{Z}_+$. Show that any non-empty at most countable subset of \mathbb{R}^n is Lebesgue measurable and that its Lebesgue measure is zero.

6. Prove the following:

Theorem (Carathéodory). Let X be an infinite set and let μ^* be an outer measure on X. Define

$$M(\mu^*) := \{ E \subset X : \mu^*(A) = \mu^*(A \cap E) + \mu^*(A \setminus E) \text{ for every } A \in \mathscr{P}(X) \},$$

and set $\mu := \mu^*|_{M(\mu^*)}$. Then $(X, M(\mu^*), \mu)$ is a measure space.

7. (Large Cantor sets) Consider a sequence $\{\alpha_1, \alpha_2, \alpha_3, \dots\} \subset (0, 1)$. Construct a Cantor-like set as follows: Let $K_0 := [0, 1]$. For each $n = 1, 2, 3, \dots$, define:

 $K_n :=$ the set obtained by removing open intervals that form the middle

 α_n^{th} fraction of each connected component of K_{n-1} .

Define

$$K := \bigcap_{n=1}^{\infty} K_n.$$

- (a) Show that K has empty interior. (Note: You should know by now how to argue that K is non-empty!)
- (b) Show that K is Lebesgue measurable.
- (c) Show that m(K) > 0 if and only if $\sum_{j=1}^{\infty} \alpha_n < +\infty$.

Hint. You will need a standard observation about infinite products. The tricky part in solving (c) is an argument in classical analysis linking the latter observation with the series $\sum_{i=1}^{\infty} \alpha_n$.

Remark. We discussed in class the following result: Fix $n \in \mathbb{Z}_+$. A set $E \subseteq \mathbb{R}^n$ is Lebesgue measurable if and only if, given any $\varepsilon > 0$, there exists an closed set $C_{\varepsilon} \subset \mathbb{R}^n$ such that $C_{\varepsilon} \subset E$ and $m^*(E \setminus C_{\varepsilon}) < \varepsilon$. The above construction shows why the word "closed" cannot be replaced by the word "open" in the latter result.