MATH 222: ANALYSIS II-MEASURE \& INTEGRATION
 SPRING 2023
 HOMEWORK 3

Assigned: JANUARY 31, 2023

1. Complete the following outline to show that there exists a function that is continuous on $[0,1]$ but not $\left(\mathscr{M}_{1}, \mathscr{M}_{1}\right)$-measurable (or, more accurately, not $\left(\left.\mathscr{M}_{1}\right|_{[0,1]}, \mathscr{M}_{1}\right)$-measurable, since the domain of the desired function is $[0,1])$. Let K denote the standard Cantor set, let $K_{0} \supsetneq K_{1} \supsetneq K_{2} \supsetneq \cdots$ be the sequence of compact sets, with each K_{n} comprised of 2^{n} closed intervals, such that

$$
K_{n}:=\bigsqcup_{j=1}^{2^{n}}\left[\alpha_{n, j}, \beta_{n, j}\right], \quad \text { and } \quad K=\bigcup_{n=0}^{\infty} K_{n} .
$$

Using the above notation, let $f_{n}:[0,1] \rightarrow[0,1], n=0,1,2, \ldots$, be the piecewise-affine continuous functions defined in class in this connection.

- Show that there exists a continuous function $f:[0,1] \rightarrow[0,1]$ such that $f_{n} \longrightarrow f$ uniformly as $n \rightarrow \infty$.
- Writing $\Psi(x)=x+f(x), x \in[0,1]$, explain why $g:=\Psi^{-1}$ is continuous (you may assume without proof the easy fact that Ψ is strictly increasing).
- Show that $S:=\Psi(K) \in \mathscr{M}_{1}$ and that $m(S)>0$.
- Finally, show that g is not $\left(\left.\mathscr{M}_{1}\right|_{[0,1]}, \mathscr{M}_{1}\right)$-measurable. (You will need to appeal to a problem in Homework 2.)

2. Make use of the discussion in the previous problem to deduce that the Borel σ-algebra $\mathscr{B}(\mathbb{R}) \nsubseteq \mathscr{M}_{1}$.
3. Let (X, \mathcal{F}) be a measurable space and let $f: X \rightarrow[-\infty,+\infty]$. Show that the following are equivalent:
(i) f is measurable.
(ii) $\{x \in X: f(x)>a\} \in \mathcal{F}$ for each $a \in \mathbb{R}$.
4. Let (X, \mathcal{F}) be a measurable space and let $f, g: X \rightarrow[-\infty,+\infty]$ be two measurable functions. Fix some number $a \in \mathbb{R}$. Define

$$
h(x):= \begin{cases}a, & \text { if } f(x)=-g(x)=+\infty \text { OR } f(x)=-g(x)=-\infty, \\ f(x)+g(x), & \text { otherwise } .\end{cases}
$$

Show that h is measurable.
5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a monotone function. Show that f is $(\mathscr{B}(\mathbb{R}), \mathscr{B}(\mathbb{R}))$-measurable.
6. Let (X, \mathcal{F}) be a measurable space and let $\left\{f_{n}\right\}_{n \in \mathbb{Z}_{+}}$be a sequence of measurable \mathbb{R}-valued functions. Show that the set of points in \mathbb{R} at which $\left\{f_{n}\right\}_{n \in \mathbb{Z}_{+}}$converges to a finite limit is measurable.
7. Let (X, \mathcal{F}) be a measurable space. For $A \in \mathscr{P}(X)$, let χ_{A} denote the characteristic function of A. Let

$$
s(x):=\sum_{j=1}^{N} \alpha_{j} \chi_{E_{j}}
$$

where $\alpha_{1}, \ldots, \alpha_{N} \in \mathbb{R}$ and $E_{1}, \ldots, E_{N} \subseteq X$. Show that if $E_{1}, \ldots, E_{N} \in \mathcal{F}$, then s is measurable. Now, assume that:

- $\alpha_{j} \neq \alpha_{k}$ when $j \neq k$, and
- E_{1}, \ldots, E_{N} are pairwise disjoint.

Prove that if f is measurable, then $E_{1}, \ldots, E_{N} \in \mathcal{F}$.

