MATH 222 : ANALYSIS II – MEASURE & INTEGRATION SPRING 2023 HOMEWORK 7

Instructor: GAUTAM BHARALI

Assigned: MARCH 7, 2023

1. Let $(X_i, d_i), i = 1, ..., n$, be metric spaces. Define the product metric D on $\prod_{i=1}^n X_i$ as

$$D((x_1, \dots, x_n), (y_1, \dots, y_n)) := \max_{1 \le i \le n} d_i(x_i, y_i) \quad \forall (x_1, \dots, x_n), (y_1, \dots, y_n) \in \prod_{i=1}^n X_i.$$

(a) Assume that each X_i contains a countable dense set $\Delta_i \subseteq X_i$, $i = 1, \ldots, n$. Show that

$$\otimes_{i=1}^{n} \mathscr{B}(X_i) = \mathscr{B}\left(\prod_{i=1}^{n} X_i\right).$$

You may freely assume without proof that D is a metric.

(b) Now conclude that $\mathscr{B}(\mathbb{R})^{\otimes n} = \mathscr{B}(\mathbb{R}^n)$.

2. Let X be a non-empty set and let $\mathcal{A} \subset \mathscr{P}(X)$ be an algebra. Let

 $\mathscr{C}(\mathcal{A}) :=$ the monotone class generated by \mathcal{A} .

Show that $\mathscr{C}(\mathcal{A}) = \mathcal{F}(\mathcal{A}).$

3. Let (X, \mathcal{M}) and (Y, \mathcal{N}) be measurable spaces. Let $f : X \to \mathbb{R}$ be \mathcal{M} -measurable and $g : Y \to \mathbb{R}$ be \mathcal{N} -measurable. Define h(x, y) := f(x)g(y). Is $h \mathcal{M} \otimes \mathcal{N}$ -measurable?

4. Let $-\infty < a < b < +\infty$, write I := [a, b], an interval in \mathbb{R} , and let $\phi : I \to \mathbb{R}$ be a continuous, non-negative, strictly increasing function such that $\phi(a) = 0$. Let *m* denote the Lebesgue measure on \mathbb{R} . Define:

$$S := \{ (x, y) \in I \times \mathbb{R} : 0 \le y \le \phi(x), \ x \in I \}.$$

Let $f: S \to \mathbb{R}$ be in $\mathscr{L}^1((m \times m)|_S)$. State and prove the intermediate assertions needed to make sense of the following statement:

$$\int_{S} f d(m \times m) = \int_{I} \left[\int_{[0, \phi(x)]} f(x, y) dm(y) \right] dm(x)$$
$$= \int_{\phi(I)} \left[\int_{[\phi^{-1}(y), b]} f(x, y) dm(x) \right] dm(y).$$

Then, prove the above equalities.

Clarification: Do **not** attempt a solution beginning with an auxiliary statement involving simple functions, etc., etc.! Using the conclusions of problems stated in previous assignments, **if** necessary, try to reduce the problem to a suitable application of the Tonelli / Fubini Theorem.

5. Let (X, \mathcal{F}, μ) be a measure space. With \mathbb{F} denoting either \mathbb{R} or \mathbb{C} , show that $\mathscr{L}^{\infty}(\mu, \mathbb{F})$ is a vector space over \mathbb{F} .