MATH 222 : ANALYSIS II – MEASURE & INTEGRATION SPRING 2023 HOMEWORK 8

Instructor: GAUTAM BHARALI

Assigned: MARCH 14, 2023

Note: In what follows, if (X, \mathcal{F}, μ) is a measure space, then $\mathbb{L}^{p}(\mu)$ —without mention of the underlying field—will denote the \mathbb{L}^{p} -space arising from \mathbb{R} -valued measurable functions.

1. (Minkowski's Integral Inequality) Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be σ -finite measure spaces and let f be a $\mathcal{M} \otimes \mathcal{N}$ -measurable $[0, +\infty)$ -valued function on $X \times Y$. Let $1 \leq p < \infty$. Show that

$$\left[\int_X \left|\int_Y f(x,y) \, d\nu(y)\right|^p d\mu(x)\right]^{1/p} \leq \int_Y \left[\int_X f(x,y)^p d\mu(x)\right]^{1/p} d\nu(y).$$

2. Let (X, \mathcal{F}, μ) be a measure space with $\mu(X) < \infty$. Let 0 . Show, using Hölder's inequality**appropriately** $(note that it is possible that <math>0), that <math>\mathbb{L}^{r}(\mu, \mathbb{F}) \subset \mathbb{L}^{p}(\mu, \mathbb{F})$, where $\mathbb{F} = \mathbb{R}$ or \mathbb{C} .

3. Let (X, \mathcal{F}, μ) be a measure space with $\mu(X) < \infty$. Let $0 . Show, without using Hölder's inequality, that <math>\mathbb{L}^{r}(X, \mu, \mathbb{F}) \subset \mathbb{L}^{p}(X, \mu, \mathbb{F})$, where $\mathbb{F} = \mathbb{R}$ or \mathbb{C} .

4. Let (X, \mathcal{F}, μ) be a measure space. Let $0 . Show that <math>\mathbb{L}^r(\mu, \mathbb{F}) \not\subset \mathbb{L}^p(\mu, \mathbb{F})$ ($\mathbb{F} = \mathbb{R}$ or \mathbb{C}) if and only if, for each $N \in \mathbb{Z}_+$, there exists a set $E_N \in \mathcal{F}$ such that $N < \mu(E_N) < \infty$.

5. Let m_n denote the Lebesgue measure on \mathbb{R}^n . Show that $\mathbb{L}^{\infty}(m_n)$ is not separable.

6. Let (X, \mathcal{F}, μ) be a measure space. Show that $\mathbb{L}^{\infty}(\mu, \mathbb{F})$ ($\mathbb{F} = \mathbb{R}$ or \mathbb{C}) is a Banach space.

7. Let (X, \mathcal{F}, μ) be a measure space. Let $1 \leq p < \infty$. Let f_n, f, g_n, g be real-valued measurable functions such that

- $g_n \longrightarrow g$ a.e. and $||g_n||_{\infty} \leq M < \infty \ \forall n \in \mathbb{Z}_+$.
- $\{f_n\}$ is a sequence in $\mathbb{L}^p(\mu)$ and $f_n \longrightarrow f$ in \mathbb{L}^p -norm.

Show that $f_n g_n \longrightarrow fg$ in \mathbb{L}^p -norm.

8. Let (X, \mathcal{F}, μ) be a measure space. A set $E \in \mathcal{F}$ is called an **atom** if $\mu(E) > 0$ and contains no measurable subset of strictly smaller but positive measure. We say that (X, \mathcal{F}, μ) is **non-atomic** if there are no atoms in \mathcal{F} .

Let (X, \mathcal{F}, μ) be a non-atomic and σ -finite measure space (where, to avoid trivialities, we take $\mu(X) > 0$). Show that the conclusion of Minkowski's inequality is false on $\mathbb{L}^{p}(\mu)$ for each $p \in (0, 1)$.