MATH 222 : ANALYSIS II-MEASURE \& INTEGRATION SPRING 2023
 HOMEWORK 9

Note: In what follows, \mathbb{F} will denote either the field \mathbb{R} or the field \mathbb{C}.

1. Give an example of a measure space (X, \mathcal{F}, μ), a sequence $\left\{f_{n}\right\} \subset \mathbb{L}^{p}(\mu, \mathbb{R})$ and a function $f \in \mathbb{L}^{p}(\mu, \mathbb{R})$, for some $p \in[1, \infty)$, such that $f_{n} \longrightarrow f$ in \mathbb{L}^{p}-norm but f_{n} does not converge to f a.e.
2. (Chebyshev's inequality) Let (X, \mathcal{F}, μ) be a measure space. Suppose $f: X \rightarrow[0,+\infty]$ and that f is integrable. Let $\alpha>0$. Show that

$$
\mu[\{f>\alpha\}] \leq \alpha^{-1} \int_{X} f d \mu
$$

3. Prove the following:

Theorem. Let m denote the Lebesgue measure on \mathbb{R}^{n}, $n \in \mathbb{Z}_{+}$. Then
(i) If $f: \mathbb{R}^{n} \rightarrow \mathbb{F}$ is Lebesgue measurable, then so is $f(\cdot+y)$ for any $y \in \mathbb{R}^{n}$.
(ii) If $f: \mathbb{R}^{n} \rightarrow \mathbb{F}$ is Lebesgue integrable, then so is $f(\cdot+y)$ and

$$
\int_{\mathbb{R}^{n}} f(x) d m(x)=\int_{\mathbb{R}^{n}} f(x+y) d m(x) \quad \forall y \in \mathbb{R}^{n}
$$

(iii) Let $p \in[1, \infty]$. If $f \in \mathbb{L}^{p}(m, \mathbb{F})$, then so is $f(\cdot+y)$ for any $y \in \mathbb{R}^{n}$.

Note. For part (ii), first establish this statement for $f=\chi_{A}$, where $A \in \mathscr{M}_{n}$. Then, extend the latter conclusion to the general case by following the 3 -step construction of the Lebesgue integral and appealing to the linearity of the integral.
4. Let m denote the Lebesgue measure on $\mathbb{R}^{n}, n \in \mathbb{Z}_{+}$. Fix $y \in \mathbb{R}^{n}$ and $p \in[1, \infty]$. Define the map $\tau_{y}: \mathbb{L}^{p}(m, \mathbb{F})$ as follows:

$$
\tau_{y}(f):=f(\cdot+y)
$$

(that τ_{y} maps into $\mathbb{L}^{p}(m, \mathbb{F})$ follows from the last problem). Show that τ_{y} is distance-preserving. (Consequently, τ_{y} is continuous.)
5. Let $\left(X_{i},\|\cdot\|^{(i)}\right), i=1,2$, be two normed linear spaces over \mathbb{F}. Show that a linear transformation $T: X_{1} \rightarrow X_{2}$ is continuous if and only if there exists a constant $C>0$ such that

$$
\sup _{x:\|x\|^{(1)}}\|T(x)\|^{(2)} \leq C .
$$

6. Let (X, \mathcal{F}, μ) be a measure space. Let $\left\{f_{n}\right\}$ be a sequence of \mathbb{F}-valued measurable functions, and let f be a measurable \mathbb{F}-valued function. Show that if $f_{n} \xrightarrow{\mu} f$, then $\left\{f_{n}\right\}$ is Cauchy in measure.
7. Let (X, \mathcal{F}) be a measurable space and let μ_{1}, μ_{2} be two measures on \mathcal{F}. Suppost at least one of $\left\{\mu_{1}, \mu_{2}\right\}$ is a finite measure. Show that the set function defined by

$$
\nu(E):=\mu_{1}(E)-\mu_{2}(E) \forall E \in \mathcal{F}
$$

is a signed measure.
8. Fix a function $F: \mathbb{R} \rightarrow \mathbb{R}$ that is increasing (not necessarily strictly) and continuous from the right. Recall, from Problem 7 of Homework 1, the outer measure on \mathbb{R} given by

$$
\mu_{F}^{*}(A):=\inf \left\{\sum_{j \in J}\left(F\left(b_{j}\right)-F\left(a_{j}\right)\right):\left\{\left(a_{j}, b_{j}\right]: j \in J\right\} \text { is an admissible cover of } A\right\} .
$$

where A is any subset of \mathbb{R}. Let $M\left(\mu_{F}^{*}\right)$ be the σ-algebra associated with μ_{F}^{*} given by the Carathéodory construction. We can show that $\mu_{F}^{*}((a, b])=F(b)-F(a)$; assuming this if necessary, show that $\mathscr{B}(\mathbb{R}) \subset M\left(\mu_{F}^{*}\right)$.

