MATH 224 : COMPLEX ANALYSIS SPRING 2016 HOMEWORK 10

Instructor: GAUTAM BHARALI Assigned: APRIL 1, 2016

1.Let Ω be a domain in \mathbb{C} and let $\{f_n\}_{n\in\mathbb{N}}$ be a sequence of injective functions that converge in $\mathcal{O}(\Omega)$ to f. Show that f is either injective or a constant function. How does the conclusion change if, instead of a domain, we allow Ω to be an arbitrary open set?

- **2.** Let Π^+ denote the upper half-plane, i.e. $\Pi^+ := \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}$. Suppose $f \in \mathcal{O}(\Pi^+)$ and $f(\Pi^+) \subset \mathbb{D}$. How large can |f'(i)| be?
- 3-5. Problems 8, 9 and 14 from the exercises to III-Secn. 3 of Conway.
- **6.** Let S be the strip $S := \{z \in \mathbb{C} : -\pi < \text{Im}(z) < \pi\}$. Construct a biholomorphic mapping of S onto \mathbb{D} .