MATH 224: COMPLEX ANALYSIS
 SPRING 2016
 HOMEWORK 1

1. Let Ω be an open subset of \mathbb{C} and let $f, g: \Omega \longrightarrow \mathbb{C}$. Let f and g be \mathbb{C}-differentiable at $a \in \Omega$. Assuming the product rule show that if $g(a) \neq 0$, then:
a) (f / g) is \mathbb{C}-differentiable at a; and
b) $(f / g)^{\prime}(a)$ has the expression

$$
\left(\frac{f}{g}\right)^{\prime}(a)=\frac{f^{\prime}(a) g(a)-f(a) g^{\prime}(a)}{(g(a))^{2}}
$$

2. Let $\left\{a_{n}\right\}$ be a series of real numbers. Define

$$
\begin{aligned}
A_{k} & :=\inf \left\{a_{k}, a_{k+1}, a_{k+2}, \ldots\right\} \\
B_{k} & :=\sup \left\{a_{k}, a_{k+1}, a_{k+2}, \ldots\right\}
\end{aligned}
$$

Show that

$$
\liminf _{n \rightarrow \infty} a_{n}=\lim _{k \rightarrow \infty} A_{k}, \quad \text { and } \quad \limsup _{n \rightarrow \infty} a_{n}=\lim _{k \rightarrow \infty} B_{k}
$$

3. Let Ω be a connected open subset of \mathbb{C} and let $f: \Omega \longrightarrow \mathbb{C}$ be holomorphic on Ω. Suppose $f(\Omega)$ is contained in a line in \mathbb{C} that passes through the origin. Show that f is a constant.
Note. You may use, without proof, the following:
Proposition. Let Ω be a connected open subset of \mathbb{R}^{2} and $u: \Omega \longrightarrow \mathbb{R}$ a function for which $\partial_{x} u$ and $\partial_{y} u$ exist at each point and are continuous on Ω. If $\partial_{x} u(x, y)=\partial_{y} u(x, y)=0$ for each $(x, y) \in \Omega$, then u is a constant.
4. Show that the radius of convergence of the power series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} z^{n(n+1)}
$$

equals 1. Also discuss the convergence of this series at $z=1,-1$, and i.
5. Derive the identities

$$
\sin (z)=\frac{e^{i z}-e^{-i z}}{2 i}, \quad \text { and } \quad \cos (z)=\frac{e^{i z}+e^{-i z}}{2}
$$

for every $z \in \mathbb{C}$, giving complete justifications.
6-8. Problems 12, 15 and 19 from the exercises to III-Secn. 2 of Conway.

