MATH 224 : COMPLEX ANALYSIS SPRING 2016 HOMEWORK 1

Instructor: GAUTAM BHARALI

Assigned: JANUARY 15, 2016

1. Let Ω be an open subset of \mathbb{C} and let $f, g : \Omega \longrightarrow \mathbb{C}$. Let f and g be \mathbb{C} -differentiable at $a \in \Omega$. Assuming the product rule show that if $g(a) \neq 0$, then:

a) (f/g) is \mathbb{C} -differentiable at a; and

b) (f/g)'(a) has the expression

$$\left(\frac{f}{g}\right)'(a) = \frac{f'(a)g(a) - f(a)g'(a)}{(g(a))^2}.$$

2. Let $\{a_n\}$ be a series of real numbers. Define

$$A_k := \inf\{a_k, a_{k+1}, a_{k+2}, \dots\},\$$

$$B_k := \sup\{a_k, a_{k+1}, a_{k+2}, \dots\}.$$

Show that

$$\liminf_{n \to \infty} a_n = \lim_{k \to \infty} A_k, \quad \text{and} \quad \limsup_{n \to \infty} a_n = \lim_{k \to \infty} B_k.$$

3. Let Ω be a connected open subset of \mathbb{C} and let $f : \Omega \longrightarrow \mathbb{C}$ be holomorphic on Ω . Suppose $f(\Omega)$ is contained in a line in \mathbb{C} that passes through the origin. Show that f is a constant.

Note. You may use, without proof, the following:

Proposition. Let Ω be a connected open subset of \mathbb{R}^2 and $u : \Omega \longrightarrow \mathbb{R}$ a function for which $\partial_x u$ and $\partial_y u$ exist at each point and are continuous on Ω . If $\partial_x u(x, y) = \partial_y u(x, y) = 0$ for each $(x, y) \in \Omega$, then u is a constant.

4. Show that the radius of convergence of the power series

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n} z^{n(n+1)}$$

equals 1. Also discuss the convergence of this series at z = 1, -1, and *i*.

5. Derive the identities

$$\sin(z) = \frac{e^{iz} - e^{-iz}}{2i}$$
, and $\cos(z) = \frac{e^{iz} + e^{-iz}}{2}$,

for every $z \in \mathbb{C}$, giving complete justifications.

6-8. Problems 12, 15 and 19 from the exercises to III-Secn. 2 of Conway.