MATH 224 : COMPLEX ANALYSIS SPRING 2016 HOMEWORK 2

Instructor: GAUTAM BHARALI

Assigned: JANUARY 22, 2016

1. Let $\{a_n\}$ and $\{b_n\}$ be two real sequences and assume that

- $b_n > 0$ for $n = 1, 2, 3, \ldots;$
- $\{b_n\}$ converges and $\lim_{n\to\infty} b_n > 0$.

Show that

$$\limsup_{n \to \infty} a_n b_n = \big(\lim_{n \to \infty} b_n\big) \big(\limsup_{n \to \infty} a_n\big).$$

Does this remain true if the positivity requirement on $\lim_{n\to\infty} b_n$ is dropped?

2. Complete the outline below to prove the following:

Theorem. Let Ω be a connected open set and let $f \in \mathcal{O}(\Omega)$. If $f' \equiv 0$, then f is a constant function.

Step 1. Fix a point $a \in \Omega$ and set $S := \{z \in \Omega : f(z) = f(a)\}$. Argue that S is closed.

- Step 2. Let $w \in S$. We will show that there exists a number $r_w > 0$ such that $D(z_0; r_w) \subset S$. Assume this is false and argue that there will be a point $w^* \in \Omega$ such that the closed line segment — denote it by $[w, w^*]$ — is contained in Ω .
- Step 3. Consider the function $\Phi : [0, 1] \longrightarrow \mathbb{C}$ given by (note: the function with which f is composed below is a parametrization of $[w, w^*]$ by the unit interval)

$$\Phi(t) := f((1-t)w + tw^*).$$

Study this function and obtain a contradiction.

Step 4. Now complete the proof.

3. Let Ω be an open subset of \mathbb{C} and let $f \in \mathcal{O}(\Omega)$. Let z_0 be a point in Ω at which $f'(z_0) \neq 0$. Using any relevant result that you know **about** \mathbb{R}^n -valued maps, show that there is a neighbourhood $U \subset \Omega$ of z_0 on which f is injective and V := f(U) is an open subset of \mathbb{C} . Is the (local) inverse $(f|_U)^{-1}$ holomorphic on V?

4. Let $a, b \in \mathbb{R} \setminus \mathbb{Z}$. Find some condition on a and b that ensures that there is a continuous branch of $z^a(1-z)^b$ defined on $\mathbb{C} \setminus [0,1]$. Then prove that any such branch is holomorphic on $\mathbb{C} \setminus [0,1]$.

5. Let $z_0 = a + ib \in \mathbb{C}$, $a, b \in \mathbb{R}$. Write down formulas, in terms of a and b, of the square roots of z_0 .

6–11. Problems 10, 13, 20 and 21 from the exercises to III–Secn. 2, and problems 8 and 9 from the exercises to IV–Secn. 1 of Conway.