MATH 224 : COMPLEX ANALYSIS
 SPRING 2016
 HOMEWORK 3

1. Let G be an open set in \mathbb{C} and let $f: G \longrightarrow \mathbb{C}$ be a complex-valued continuous function. Let $z \in G$ and define

$$
F_{\varepsilon}(\theta):=f\left(z+\varepsilon e^{i \theta}\right), \quad \theta \in[0,2 \pi]
$$

for all $\varepsilon>0$ sufficiently small that F_{ε} is defined. Prove that $F_{\varepsilon} \longrightarrow f(z)$ uniformly as $z \rightarrow 0^{+}$.
2-3. Problems 13 and 20 from the exercises to IV-Secn. 1 of Conway.
4-7. Problems 6, 7, 9, 11 from the exercises to IV-Secn. 2 of Conway.
8. Suppose that f is an entire function and that there exist two real numbers $M>0$ and $p \geq 1$ such that $|f(z)| \leq M\left(1+|z|^{p}\right) \forall z \in \mathbb{C}$. Describe, giving a rigorous argument, all the entire functions that satisfy this growth estimate.

