MATH 224 : COMPLEX ANALYSIS SPRING 2016 HOMEWORK 3

Instructor: GAUTAM BHARALI

Assigned: JANUARY 30, 2016

1. Let G be an open set in \mathbb{C} and let $f: G \longrightarrow \mathbb{C}$ be a complex-valued continuous function. Let $z \in G$ and define

$$F_{\varepsilon}(\theta) := f(z + \varepsilon e^{i\theta}), \quad \theta \in [0, 2\pi]$$

for all $\varepsilon > 0$ sufficiently small that F_{ε} is defined. Prove that $F_{\varepsilon} \longrightarrow f(z)$ uniformly as $z \to 0^+$.

2-3. Problems 13 and 20 from the exercises to IV-Secn. 1 of Conway.

4–7. Problems 6, 7, 9, 11 from the exercises to IV–Secn. 2 of Conway.

8. Suppose that f is an entire function and that there exist two real numbers M > 0 and $p \ge 1$ such that $|f(z)| \le M(1 + |z|^p) \ \forall z \in \mathbb{C}$. Describe, giving a **rigorous** argument, all the entire functions that satisfy this growth estimate.